🔍 搜尋結果:local

🔍 搜尋結果:local

如何使用 Visual Studio Code 自訂新的 Windows 終端

幾天前,微軟發布了新[Windows Terminal](https://www.microsoft.com/en-us/p/windows-terminal-preview/9n0dx20hk701)的早期版本。 Windows 終端是一種新型、現代化、快速、高效、強大且高效的終端應用程式,適用於命令列工具和 shell(例如命令提示字元、PowerShell 和 WSL)的使用者。 其主要功能包括多個選項卡、Unicode 和 UTF-8 字元支援、GPU 加速文字渲染引擎以及自訂主題、樣式和配置。 顯然,這是一個託管在 GitHub 上的開源專案: <https://github.com/microsoft/terminal> 請隨意參與。 目前它有點不穩定,將來會推出更多功能,但我已經使用它幾天了,我喜歡這個想法。 到目前為止,我一直在使用[Cmder](https://cmder.net/) ,但 Windows Terminal 有一些新的有前景的功能。 如何安裝 ---- 您可以直接從 Windows 應用程式商店安裝 Windows 終端,或者如果您想了解它的工作原理,您可以下載原始程式碼、建置它並啟動終端。 ![](https://thepracticaldev.s3.amazonaws.com/i/rb6x6yo858b6ufdt42vw.PNG) 商店版本的連結: <https://www.microsoft.com/en-us/p/windows-terminal-preview/9n0dx20hk701> GitHub 專案的連結: <https://github.com/microsoft/terminal> 原始碼和專案都有很好的文件記錄。 第一次發射 ----- 如果您從“開始”功能表啟動該應用程式,它將如下面的螢幕截圖所示。 ![](https://thepracticaldev.s3.amazonaws.com/i/iut0oi8j4iufgdyi6du6.PNG) 預設終端是 PowerShell。 如果按一下「+」符號,應用程式將在新分頁中啟動另一個終端。 如果您按一下向下箭頭符號 ⬇,您可以從清單中選擇新終端。 清單下方還有另一個有趣的按鈕,就是設定按鈕。 設定 -- 如果按一下向下箭頭,然後按一下「設定」按鈕,此時,設定檔案(它是 JSON 檔案)將在 Visual Studio 的新實例中開啟。 如果您想要直接開啟文件,可以開啟 Visual Studio Code 並直接從下列目錄開啟檔案: **%USERPROFILE%\\AppData\\Local\\Packages\\Microsoft.WindowsTerminal\_8wekyb3d8bbwe\\LocalState** 在此文件中,您可以找到 Windows 終端機的所有設定。 目前,您只能透過該文件與設定進行交互,但將來,將向應用程式加入 UI。 新增的個人資料 ------- 如果要新增新的設定文件,請前往 JSON 設定檔的「設定檔」部分,然後新增新的設定檔部分,如下所示: ``` { ``` ``` "acrylicOpacity" : 0.85, ``` ``` "background" : "#012456", ``` ``` "backgroundImage" : "C:/users/barto/AppData/Local/Packages/Microsoft.WindowsTerminal_8wekyb3d8bbwe/RoamingState/unicorn.gif", ``` ``` "backgroundImageOpacity" : 0.7, ``` ``` "backgroundImageStretchMode" : "uniformToFill", ``` ``` "closeOnExit" : false, ``` ``` "colorScheme" : "Solarized Dark", ``` ``` "commandline" : "powershell.exe", ``` ``` "cursorColor" : "#00FF00", ``` ``` "cursorHeight" : 25, ``` ``` "cursorShape" : "vintage", ``` ``` "fontFace" : "Fira Code", ``` ``` "fontSize" : 12, ``` ``` "guid" : "{79285a8e-036c-446f-8a9c-78994e34bf78}", ``` ``` "historySize" : 9001, ``` ``` "icon" : "ms-appdata:///roaming/pwsh-32.png", ``` ``` "name" : "PowerShell with Unicorn", ``` ``` "padding" : "0, 0, 0, 0", ``` ``` "snapOnInput" : true, ``` ``` "startingDirectory" : "%USERPROFILE%", ``` ``` "useAcrylic" : false ``` ``` } ``` 如果您想從此處複製此部分,請注意指南。 請記住每次貼上文件時都要更改它。 例如,它用於設定預設終端,並且它在檔案中必須是唯一的。 正如您在我的個人資料部分中看到的,您可以加入圖像作為背景、更改字體大小、遊標形狀等等。 例如,我使用 Fira Code 作為字體,因為我也喜歡 Visual Studio Code 中的它。 它在文本中加入了一些很棒的體驗。 您可以從這裡下載: <https://github.com/tonsky/FiraCode> 如果您想在會議上給您的朋友或與會者留下深刻印象,您可以加入 gif 作為背景。 您可以在下圖中看到它的實際效果。 ![](https://thepracticaldev.s3.amazonaws.com/i/uaackzt4yxp854i0l5rl.gif) 配色方案 ---- 在profiles.json 檔案的末尾,您可以找到一個名為「schemes」的部分。 從這裡您可以新增或更改終端的預設顏色。 如果您想在新設定檔中使用它,則必須在屬性「name」和設定檔部分的「colorScheme」屬性中插入相同的方案名稱。 分享您的個人資料 -------- 我在我的個人資料上建立了一個新要點來共享我的個人資料設置,您可以在這裡找到它: <https://gist.github.com/kasuken/076d68b92e2a67dfda591587c77a40c0#file-profiles-json> 。 在評論中分享您的個人資料! 我們一起可以創造一些很棒的東西! ![](https://thepracticaldev.s3.amazonaws.com/i/2k9fw1y21k3sv8q1swr3.gif) ### 我的動圖 有些使用者要求提供 gif 動圖。 我在下面分享它們! ![](https://thepracticaldev.s3.amazonaws.com/i/s8ysw6hfoj1a61ovz0us.gif) ![](https://thepracticaldev.s3.amazonaws.com/i/3u7x3b3otmyh6kytychp.gif) ![](https://thepracticaldev.s3.amazonaws.com/i/asvdrzeanv9a20jekihr.gif) --- 原文出處:https://dev.to/kasuken/how-to-customize-the-new-windows-terminal-with-visual-studio-code-56b1

使用 NextJS 和 Wing 建立您自己的 ChatGPT 圖形客戶端 🤯

--- 標題:使用 NextJS 和 Wing 建立您自己的 ChatGPT 圖形客戶端 🤯 描述:使用 Winglang 和 NextJS 建立的 ChatGPT 客戶端應用程式 canonical\_url:https://www.winglang.io/blog/2024/05/16/chatgpt-client-with-nextjs-and-wing 發表:真實 --- 長話短說 ---- 在本文結束時,您將使用 Wing 和 Next.js 建置並部署 ChatGPT 用戶端。 該應用程式可以在本地執行(在本地雲端模擬器中)或將其部署到您自己的雲端提供者。 ![舞蹈](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/1sm2cj4sbcm4skp0ho23.gif) --- 介紹 -- 建置 ChatGPT 用戶端並將其部署到您自己的雲端基礎架構是確保對資料進行控制的好方法。 將 LLM 部署到您自己的雲端基礎架構可為您的專案提供隱私和安全性。 有時,在使用 OpenAI 的 ChatGPT 等專有 LLM 平台時,您可能會擔心資料在遠端伺服器上儲存或處理,這可能是由於輸入平台的資料的敏感度或其他隱私原因。 在這種情況下,將 LLM 自託管到您的雲端基礎架構或在您的電腦上本地執行可以讓您更好地控制資料的隱私和安全性。 > [Wing](https://git.new/wing-repo)是一種面向雲端的程式語言,可讓您建置和部署基於雲端的應用程式,而無需擔心底層基礎架構。 它允許您使用相同的語言定義和管理雲端基礎架構和應用程式程式碼,從而簡化了您在雲端上建置的方式。 Wing 與雲端無關——用它建置的應用程式可以編譯並部署到各種雲端平台。 > {% cta https://git.new/wing-repo %} 看 ⭐ Wing {% endcta %} [![給我們一顆星星](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rg63klimgm7s0aw72rn2.png)](https://git.new/wing-repo) --- 讓我們開始吧! ------- 要繼續操作,您需要: - 對 Next.js 有一定了解 - 在您的機器上[安裝 Wing](https://www.winglang.io/docs/) 。如果您不知道如何操作,請不要擔心。我們將在這個專案中一起討論它。 - 取得您的 OpenAI API 金鑰。 建立您的專案 ------ 首先,您需要在電腦上安裝 Wing。執行以下命令: ``` npm install -g winglang ``` 透過檢查版本確認安裝: ``` wing -V ``` ### 建立您的 Next.js 和 Wing 應用程式。 ``` mkdir assistant cd assistant npx create-next-app@latest frontend mkdir backend && cd backend wing new empty ``` 我們已在 Assistant 目錄中成功建立了 Wing 和 Next.js 專案。我們的 ChatGPT 用戶端的名稱是 Assistant。聽起來很酷,對吧? 前端和後端目錄分別包含我們的 Next 和 Wing 應用程式。 `wing new empty`建立三個檔案: `package.json` 、 `package-lock.json`和`main.w` 。後者是應用程式的入口點。 ### 在 Wing 模擬器中本地執行您的應用程式 Wing 模擬器可讓您在本機電腦內執行程式碼、編寫單元測試和偵錯程式碼,而無需部署到實際的雲端供應商,從而幫助您更快地進行迭代。 使用以下命令在本機上執行您的 Wing 應用程式: ``` wing it ``` 您的 Wing 應用程式將在`localhost:3000`上執行。 ![安慰](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/n5ytrntrz7lc5225w8w8.png) 設定您的後端 ------ - 讓我們安裝 Wing 的 OpenAI 和 React 函式庫。 OpenAI 庫提供了與 LLM 互動的標準介面。 React 程式庫可讓您將 Wing 後端連接到 Next 應用程式。 ``` npm i @winglibs/openai @winglibs/react ``` - 將這些套件匯入到`main.w`檔案中。我們還導入需要的所有其他庫。 ``` bring openai bring react bring cloud bring ex bring http ``` `bring`是 Wing 中的導入語句。這樣想,Wing 使用`bring`來實現與 JavaScript 中`import`相同的功能。 `cloud`是 Wing 的雲端庫。它公開了雲端 API、儲存桶、計數器、網域、端點、函數和更多雲端資源的標準介面。 `ex`是用於與表格和雲端 Redis 資料庫介面的標準庫, `http`用於呼叫不同的 HTTP 方法 - 從遠端資源發送和檢索資訊。 取得您的 OpenAI API 金鑰 ------------------ 我們將在我們的應用程式中使用`gpt-4-turbo`但您可以使用任何 OpenAI 模型。 - 如果您還沒有[OpenAI](https://platform.openai.com/signup)帳戶,請建立一個。若要建立新的 API 金鑰,請前往[platform.openai.com/api-keys](http://platform.openai.com/api-keys)並選擇**建立新金鑰。** ![OpenAI 金鑰](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9645jxsf1fj8902iwnr7.png) - 設定**名稱**、**專案**和**權限,**然後按一下**建立金鑰。** ![OpenAI Key2](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/yng28wns7esezf94t3uq.png) 初始化 OpenAI ---------- 建立一個`Class`來初始化您的 OpenAI API。我們希望它可以重複使用。 我們將向`Assistant`類別加入`personality` ,以便在向 AI 助手傳遞提示時可以指定 AI 助手的個性。 ``` let apiKeySecret = new cloud.Secret(name: "OAIAPIKey") as "OpenAI Secret"; class Assistant { personality: str; openai: openai.OpenAI; new(personality: str) { this.openai = new openai.OpenAI(apiKeySecret: apiKeySecret); this.personality = personality; } pub inflight ask(question: str): str { let prompt = `you are an assistant with the following personality: ${this.personality}. ${question}`; let response = this.openai.createCompletion(prompt, model: "gpt-4-turbo"); return response.trim(); } } ``` Wing 分別使用`preflight`和`inflight`概念來統一基礎設施定義和應用程式邏輯。 **預檢**程式碼(通常是基礎設施定義)在編譯時執行一次,而執行**中**程式碼將在執行時執行以實現應用程式的行為。 雲端儲存桶、佇列和 API 端點是預檢的一些範例。定義預檢時不需要新增預檢關鍵字,Wing 預設知道這一點。但對於飛行塊,您需要在其中加入“飛行”一詞。 > 上面的程式碼中有一個飛行中的區塊。 Inflight 區塊是您編寫非同步執行時間程式碼的地方,這些程式碼可以透過其 inflight API 直接與資源互動。 > 測試和儲存雲端秘密 --------- 讓我們來看看如何保護我們的 API 金鑰,因為我們肯定要[考慮安全性](https://techhq.com/2022/09/hardcoded-api-keys-jeopardize-data-in-the-cloud/)。 讓我們在後端的根目錄中建立一個`.env`檔案並傳入我們的 API 金鑰: ``` OAIAPIKey = Your_OpenAI_API_key ``` 我們可以在本地引用 .env 檔案來測試 OpenAI API 金鑰,然後由於我們計劃部署到 AWS,因此我們將逐步設定[AWS Secrets Manager](https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html) 。 ![AWS 主控台](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/e2a1nbh0egmjkckxnaov.png) 首先,我們前往 AWS 並登入控制台。如果您沒有帳戶,可以免費建立一個。 ![AWS平台](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/n937801fzs0lajf2knaq.png) 導覽至 Secrets Manager,讓我們儲存 API 金鑰值。 ![AWS 秘密管理器](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/scbb1snyzjdoip2nvdpl.png) ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/lf79xzn6vfhqylao8iuo.png) 我們已將 API 金鑰儲存在名為`OAIAPIKey`的雲端機密中。複製您的金鑰,我們將跳到終端並連接到現在儲存在 AWS 平台中的金鑰。 ``` wing secrets ``` 現在將您的 API 金鑰貼上為終端中的值。您的密鑰現已正確存儲,我們可以開始與我們的應用程式互動。 --- 將人工智慧的回應儲存在雲端。 -------------- 將人工智慧的回應儲存在雲端可以讓您控制資料。它駐留在您自己的基礎設施上,與 ChatGPT 等專有平台不同,您的資料位於您無法控制的第三方伺服器上。您也可以在需要時檢索這些回應。 讓我們建立另一個類,使用 Assistant 類來傳遞 AI 的個性和提示。我們還將每個模型的回應作為`txt`檔案儲存在雲端儲存桶中。 ``` let counter = new cloud.Counter(); class RespondToQuestions { id: cloud.Counter; gpt: Assistant; store: cloud.Bucket; new(store: cloud.Bucket) { this.gpt = new Assistant("Respondent"); this.id = new cloud.Counter() as "NextID"; this.store = store; } pub inflight sendPrompt(question: str): str { let reply = this.gpt.ask("{question}"); let n = this.id.inc(); this.store.put("message-{n}.original.txt", reply); return reply; } } ``` --- 我們為我們的助理設定了「受訪者」的個性。我們希望它能夠回答問題。您也可以讓前端使用者在發送提示時指定此個性。 每次產生回應時,計數器都會遞增,並且計數器的值會傳遞到用於在雲端中儲存模型回應的`n`變數中。然而,我們真正想要的是建立一個資料庫來儲存來自前端的使用者提示和模型的回應。 讓我們定義我們的資料庫。 定義我們的資料庫 -------- Wing 內建了`ex.Table` - 一個用於儲存和查詢資料的 NoSQL 資料庫。 ``` let db = new ex.Table({ name: "assistant", primaryKey: "id", columns: { question: ex.ColumnType.STRING, answer: ex.ColumnType.STRING } }); ``` --- 我們在資料庫定義中新增了兩列 - 第一列用於儲存使用者提示,第二列用於儲存模型的回應。 建立 API 路由和邏輯 ------------ 我們希望能夠在後端發送和接收資料。讓我們建立 POST 和 GET 路由。 ``` let api = new cloud.Api({ cors: true }); api.post("/assistant", inflight((request) => { // POST request logic goes here })); api.get("/assistant", inflight(() => { // GET request logic goes here })); ``` --- ``` let myAssistant = new RespondToQuestions(store) as "Helpful Assistant"; api.post("/assistant", inflight((request) => { let prompt = request.body; let response = myAssistant.sendPrompt(JSON.stringify(prompt)); let id = counter.inc(); // Insert prompt and response in the database db.insert(id, { question: prompt, answer: response }); return cloud.ApiResponse({ status: 200 }); })); ``` 在 POST 路由中,我們希望將從前端收到的使用者提示傳遞到模型中並獲得回應。提示和回應都將儲存在資料庫中。 `cloud.ApiResponse`可讓您傳送對使用者要求的回應。 新增前端發出 GET 請求時檢索資料庫專案的邏輯。 --- 新增前端發出 GET 請求時檢索資料庫專案的邏輯。 ``` api.get("/assistant", inflight(() => { let questionsAndAnswers = db.list(); return cloud.ApiResponse({ body: JSON.stringify(questionsAndAnswers), status: 200 }); })); ``` 我們的後端已經準備好了。我們在本地雲端模擬器中測試一下。 跑`wing it` 。 讓我們轉到`localhost:3000`並向我們的助理詢問一個問題。 ![助理回應](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/3ox67623b9vye7o6quqe.png) 我們的問題和助理的回答都已儲存到資料庫中。看一看。 ![表資料](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4ajd94ywkhjw04yb21e2.png) 向前端公開您的 API URL --------------- 我們需要將後端的 API URL 公開給 Next 前端。這就是之前安裝的 React 函式庫派上用場的地方。 ``` let website = new react.App({ projectPath: "../frontend", localPort: 4000 }); website.addEnvironment("API_URL", api.url); ``` 將以下內容加入 Next 應用程式的`layout.js`中。 ``` import { Inter } from "next/font/google"; import "./globals.css"; const inter = Inter({ subsets: ["latin"] }); export const metadata = { title: "Create Next App", description: "Generated by create next app", }; export default function RootLayout({ children }) { return ( <html lang="en"> <head> <script src="./wing.js" defer></script> </head> <body className={inter.className}>{children}</body> </html> ); } ``` 我們現在可以在 Next 應用程式中存取`API_URL` 。 實作前端邏輯 ------ 讓我們實作前端邏輯來呼叫後端。 ``` import { useEffect, useState, useCallback } from 'react'; import axios from 'axios'; function App() { const [isThinking, setIsThinking] = useState(false); const [input, setInput] = useState(""); const [allInteractions, setAllInteractions] = useState([]); const retrieveAllInteractions = useCallback(async (api_url) => { await axios ({ method: "GET", url: `${api_url}/assistant`, }).then(res => { setAllInteractions(res.data) }) }, []) const handleSubmit = useCallback(async (e)=> { e.preventDefault() setIsThinking(!isThinking) if(input.trim() === ""){ alert("Chat cannot be empty") setIsThinking(true) } await axios({ method: "POST", url: `${window.wingEnv.API_URL}/assistant`, headers: { "Content-Type": "application/json" }, data: input }) setInput(""); setIsThinking(false); await retrieveAllInteractions(window.wingEnv.API_URL); }) useEffect(() => { if (typeof window !== "undefined") { retrieveAllInteractions(window.wingEnv.API_URL); } }, []); // Here you would return your component's JSX return ( // JSX content goes here ); } export default App; ``` `retrieveAllInteractions`函數取得後端資料庫中的所有問題和答案。 `handSubmit`函數將使用者的提示傳送到後端。 讓我們加入 JSX 實作。 ``` import { useEffect, useState } from 'react'; import axios from 'axios'; import './App.css'; function App() { // ... return ( <div className="container"> <div className="header"> <h1>My Assistant</h1> <p>Ask anything...</p> </div> <div className="chat-area"> <div className="chat-area-content"> {allInteractions.map((chat) => ( <div key={chat.id} className="user-bot-chat"> <p className='user-question'>{chat.question}</p> <p className='response'>{chat.answer}</p> </div> ))} <p className={isThinking ? "thinking" : "notThinking"}>Generating response...</p> </div> <div className="type-area"> <input type="text" placeholder="Ask me any question" value={input} onChange={(e) => setInput(e.target.value)} /> <button onClick={handleSubmit}>Send</button> </div> </div> </div> ); } export default App; ``` 在本地執行您的專案 --------- 導航到您的後端目錄並使用以下命令在本地執行您的 Wing 應用程式 ``` cd ~assistant/backend wing it ``` 也執行您的 Next.js 前端: ``` cd ~assistant/frontend npm run dev ``` 讓我們看一下我們的應用程式。 ![聊天應用程式](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/97g8kikxfwwb7ephfdni.png) 讓我們透過 Next 應用程式向 AI 助理詢問幾個開發人員問題。 ![聊天應用程式2](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5uoz1y9czt0nwwtsesrz.png) 將您的應用程式部署到 AWS -------------- 我們已經了解了我們的應用程式如何在本地執行。 Wing 也允許您部署到包括 AWS 在內的任何雲端提供者。要部署到 AWS,您需要使用您的憑證來設定[Terraform](https://terraform.io/downloads)和[AWS CLI](https://docs.aws.amazon.com/cli/) 。 - 使用`tf-aws`編譯到 Terraform/AWS 。此指令指示編譯器使用 Terraform 作為配置引擎,將所有資源綁定到預設的 AWS 資源集。 ``` cd ~/assistant/backend wing compile --platform tf-aws main.w ``` --- - 執行 Terraform 初始化並應用 ``` cd ./target/main.tfaws terraform init terraform apply ``` --- 注意: `terraform apply`需要一些時間才能完成。 您可以[在此處](https://github.com/NathanTarbert/chatgpt-client-wing-nextjs)找到本教程的完整程式碼。 總結一下 ---- 正如我之前提到的,我們都應該關心我們的應用程式的安全性,建立您自己的 ChatGPT 用戶端並將其部署到您的雲端基礎設施可以為您的應用程式提供一些非常好的[保障](https://docs.aws.amazon.com/whitepapers/latest/aws-overview/security-and-compliance.html#:~:text=Keep%20Your%20data%20safe%20%E2%80%94%20The,compliance%20programs%20in%20its%20infrastructure.)。 我們在本教程中演示了[Wing](https://git.new/wing-repo)如何提供一種簡單的方法來建置可擴展的雲端應用程式,而無需擔心底層基礎設施。 如果您有興趣建立更酷的東西,Wing 擁有一個活躍的開發人員社區,他們可以合作建立雲端願景。我們很高興在那裡見到你。 只需前往我們的[Discord](https://t.winglang.io/discord)打個招呼即可! --- 原文出處:https://dev.to/winglang/building-your-own-chatgpt-graphical-client-with-nextjs-and-wing-29jj

20 多個使用 AI 的專案,具有完整的源程式碼🚀

過去幾天對於人工智慧來說是令人興奮的。 然而,作為開發人員,我們中的許多人還不了解人工智慧的易用性。 今天,我們將介紹您可以使用人工智慧輕鬆建立的精彩專案。無需成為人工智慧專家,每個工具都附帶教學或程式碼演練。 讓我們跳進去吧! ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0vxxzizvu643bfpbo1xu.gif) --- 1. [CopilotKit](https://github.com/CopilotKit/CopilotKit) - 在數小時內為您的產品提供 AI Copilot。 ------------------------------------------------------------------------------------ [![副駕駛套件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nzuxjfog2ldam3csrl62.png)](https://github.com/CopilotKit/CopilotKit) 將 AI 功能整合到 React 中是很困難的,這就是 Copilot 的用武之地。一個簡單快速的解決方案,可將可投入生產的 Copilot 整合到任何產品中! 您可以使用兩個 React 元件將關鍵 AI 功能整合到 React 應用程式中。它們還提供內建(完全可自訂)Copilot 原生 UX 元件,例如`<CopilotKit />` 、 `<CopilotPopup />` 、 `<CopilotSidebar />` 、 `<CopilotTextarea />` 。 開始使用以下 npm 指令。 ``` npm i @copilotkit/react-core @copilotkit/react-ui ``` Copilot Portal 是 CopilotKit 提供的元件之一,CopilotKit 是一個應用程式內人工智慧聊天機器人,可查看目前應用狀態並在應用程式內採取操作。它透過插件與應用程式前端和後端以及第三方服務進行通訊。 這就是整合聊天機器人的方法。 `CopilotKit`必須包裝與 CopilotKit 互動的所有元件。建議您也開始使用`CopilotSidebar` (您可以稍後切換到不同的 UI 提供者)。 ``` "use client"; import { CopilotKit } from "@copilotkit/react-core"; import { CopilotSidebar } from "@copilotkit/react-ui"; import "@copilotkit/react-ui/styles.css"; export default function RootLayout({children}) { return ( <CopilotKit url="/path_to_copilotkit_endpoint/see_below"> <CopilotSidebar> {children} </CopilotSidebar> </CopilotKit> ); } ``` 您可以使用此[快速入門指南](https://docs.copilotkit.ai/getting-started/quickstart-backend)設定 Copilot 後端端點。 之後,您可以讓 Copilot 採取行動。您可以閱讀如何提供[外部上下文](https://docs.copilotkit.ai/getting-started/quickstart-chatbot#provide-context)。您可以使用`useMakeCopilotReadable`和`useMakeCopilotDocumentReadable`反應掛鉤來執行此操作。 ``` "use client"; import { useMakeCopilotActionable } from '@copilotkit/react-core'; // Let the copilot take action on behalf of the user. useMakeCopilotActionable( { name: "setEmployeesAsSelected", // no spaces allowed in the function name description: "Set the given employees as 'selected'", argumentAnnotations: [ { name: "employeeIds", type: "array", items: { type: "string" } description: "The IDs of employees to set as selected", required: true } ], implementation: async (employeeIds) => setEmployeesAsSelected(employeeIds), }, [] ); ``` 您可以閱讀[文件](https://docs.copilotkit.ai/getting-started/quickstart-textarea)並查看[演示影片](https://github.com/CopilotKit/CopilotKit?tab=readme-ov-file#demo)。 您可以輕鬆整合 Vercel AI SDK、OpenAI API、Langchain 和其他 LLM 供應商。您可以按照本[指南](https://docs.copilotkit.ai/getting-started/quickstart-chatbot)將聊天機器人整合到您的應用程式中。 基本想法是非常快速地建立人工智慧聊天機器人,而無需在製作任何基於法學碩士的應用程式時費力。 用例是巨大的,作為開發人員,我們絕對應該在下一個專案中嘗試使用 CopilotKit。 CopilotKit 在 GitHub 上擁有超過 5800 顆星,發布了 200 多個版本,這意味著它們不斷改進。 ![明星副駕駛套件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/p8i6roafbjxvds26fl35.gif) {% cta https://go.copilotkit.ai/Anmol %} Star CopilotKit ⭐️ {% endcta %} --- ### 🎯 使用 CopilotKit 建立的熱門應用程式。 我們可以使用 CopilotKit 建立許多創新應用程式,所以讓我們探索一些脫穎而出的應用程式! ### ✅ [人工智慧驅動的部落格平台](https://dev.to/copilotkit/how-to-build-an-ai-powered-blogging-platform-nextjs-langchain-supabase-1hdp)。 ![部落格平台](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/tvx995v2lvyujnsavaxx.gif) 您可以閱讀本文,使用`Next.js` 、 `Langchain` 、 `Supabase`和`CopilotKit`來建立這個令人驚嘆的應用程式。 LangChain&Tavily用作網路搜尋人工智慧代理,Supabase用於儲存和檢索部落格平台文章資料,CopilotKit用於將人工智慧整合到應用程式中。 ![演示人工智慧部落格平台](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/88ni6x3pdno43vani7q9.png) 您可以檢查[GitHub 儲存庫](https://github.com/TheGreatBonnie/aipoweredblog)。 ### ✅ [V0.dev 複製](https://dev.to/copilotkit/i-created-a-v0-clone-with-nextjs-gpt4-copilotkit-3cmb)。 ![v0](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/pyutbegrv571lp3i6081.png) 如果您不熟悉,Vercel 的 V0 是一款人工智慧驅動的工具,可讓您根據提示產生 UI,以及許多其他有用的功能。 shadcn 元件現在可以在文件本身的 v0 中進行編輯(如其網站所示)。 ![v0 開發](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/951hk0jqrioboe4jxf5i.gif) 您可以使用`Next.js` 、 `GPT4`和`CopilotKit`建立 V0 的克隆。這個詳細的教程名列前 7 名,總的來說,這是一個值得加入到您的作品集中的偉大專案。 簽名頁的產生輸出如下所示。 ![簽名頁](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/8xu1l5el91x4w62sz7kh.png) 您可以透過點擊右上角的按鈕輕鬆在`React Code`和`UI`之間切換。這麼酷的概念! 您可以檢查[GitHub 儲存庫](https://github.com/Tabintel/v0-copilot-next)。 ### ✅ [人工智慧行銷經理](https://dev.to/copilotkit/build-an-ai-powered-campaign-manager-nextjs-openai-copilotkit-59ii)。 ![競選經理](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/moytsjm7lcq1g52sn0ot.gif) 您可以使用`Next.js` 、 `OpenAI` 、 `Radix UI` (用於實現可存取性)、 `Recharts` (用於建立互動式圖表)以及`CopilotKit`來建立這個出色的專案來閱讀本文。 您可以觀看 David 的示範! {% 嵌入 https://youtu.be/gCJpH6Tnj5g %} 如果你想用更少的錢學到更多,這是我最喜歡的一個。 我喜歡它的 UI(一般教學不是這樣),這正是它成為你的編碼清單上的一個乾淨專案的原因:) ![示範動圖](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/gt14n0xn3bekl7u5uib1.gif) 您可以查看該應用程式的[現場演示](https://campaign-manager-demo.vercel.app/)。 您可以檢查[GitHub 儲存庫](https://github.com/CopilotKit/campaign-manager-demo)。 ### ✅ [附有人工智慧副駕駛的電子表格應用程式](https://dev.to/copilotkit/build-an-ai-powered-spreadsheet-app-nextjs-langchain-copilotkit-109d)。 ![電子表格應用程式](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/gexhqf0alwmwguu7kqsv.gif) 您可以閱讀本文,使用`Next.js` 、 `GPT-4` 、 `LangChain`和`CopilotKit`來建立這個很棒的工具。 為了使工作更輕鬆,它使用[React Spreadsheet](https://github.com/iddan/react-spreadsheet)套件為 React 和[Tavily AI](https://tavily.com/)建立簡單的可自訂電子表格作為搜尋引擎,使 AI 代理能夠進行研究並存取即時知識 你可以觀看這個演示! {% 嵌入 https://www.youtube.com/watch?v=kGQ9xl5mSoQ %} 您也可以查看[現場演示](https://spreadsheet-demo-tau.vercel.app/)。我可以肯定地說,這是一個獨特的案例,你可以得到很多啟發。 您可以檢查[GitHub 儲存庫](https://github.com/CopilotKit/spreadsheet-demo)。 ### ✅[與您的履歷聊天](https://dev.to/copilotkit/how-to-build-the-with-nextjs-openai-1mhb)。 ![與履歷聊天](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/gdagmyn1tvoa2lwfoqto.gif) 您可以閱讀本文,使用`Next.js` 、 `OpenAI`和`CopilotKit`來建立這個很棒的用例。 您不僅可以使用 ChatGPT 產生履歷,還可以將其匯出為 PDF,甚至可以透過與其對話來進一步改進它。多酷啊,對吧:) ![簡歷聊天演示](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/x6j27yls99cdv219ztwx.png) 您可以檢查[GitHub 儲存庫](https://github.com/TheGreatBonnie/AIPoweredResumeBuilder)。 ### ✅ [文字到 Powerpoint 應用程式](https://dev.to/copilotkit/how-to-build-ai-powered-powerpoint-app-nextjs-openai-copilotkit-ji2)。 ![文字到 Powerpoint 應用程式](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/vh01hh3l29qtztri4180.png) 您可以閱讀本文,使用`Next.js` 、 `OpenAI`和`CopilotKit`建立 Text to Powerpoint 應用程式。 這是一個簡單但非常強大的概念,本文也清楚地說明如何在任何幻燈中加入背景圖像。 您可以檢查[GitHub 儲存庫](https://github.com/TheGreatBonnie/aipoweredpresentation)。 ### ✅ [StudyPal:您的人工智慧驅動的個人化學習伴侶](https://dev.to/rajesh-adk-137/studypal-your-ai-powered-personalized-learning-companion-59d)。 ![學習夥伴](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qhau3p28cylr25lae5r4.png) 您可以從精選清單中選擇您想要的主題,為個人化的學習旅程奠定基礎。 您需要提供有關您的教育背景的詳細訊息,以便 StudyPal 能夠根據他們當前的知識水平定製材料和練習。 `Additional Details`部分可讓學生指定重點領域,確保內容與其學習目標一致。 您可以閱讀本文,使用`React` 、 `Node`和`CopilotKit`來建立這個很棒的用例。 您可以觀看該應用程式的[演示](https://github-production-user-asset-6210df.s3.amazonaws.com/89499267/328419789-a06b11c6-ffbc-44b6-96b0-648d2a38cd7c.mp4?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240512%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240512T083208Z&X-Amz-Expires=300&X-Amz-Signature=f6fe016e65e167e94b8322b70743a7fb02fed91f2c87c5af7459e1fa022faac2&X-Amz-SignedHeaders=host&actor_id=74038190&key_id=0&repo_id=793889064)。 您可以檢查[GitHub 儲存庫](https://github.com/rajesh-adk-137/StudyPal)。 --- 2.什麼是郎鏈? -------- 其餘專案將與 langchain 和 AI 相關(有些使用 python)。最好稍微了解一下這一點。 LangChain 是用於開發由大型語言模型(LLM)支援的應用程式的框架。 ![朗查恩](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0fuo9c2ljruv3c54is10.png) ![朗查恩](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/btgq9o8y1yhjfnrinqqn.png) 總體而言,LangChain 簡化了 LLM 申請生命週期的每個階段。您可以閱讀[官方文件](https://python.langchain.com/docs/get_started/introduction/)以了解更多內容。 如果您想了解有關 langchain 的更多訊息,我建議您觀看 freeCodeCamp 的[本教程](https://www.youtube.com/watch?v=HSZ_uaif57o)。 {% 嵌入 https://www.youtube.com/watch?v=HSZ\_uaif57o %} --- ### 🎯 使用 Langchain/AI/Python 建立的熱門應用程式。 我們可以使用 langchain 建立很多很多高級應用程式,所以讓我們探索一些脫穎而出的應用程式! ### ✅ [Mac 上的語音助理](https://github.com/chidiwilliams/GPT-Automator)- 您的語音控制 Mac 助理。 ![GPT自動機](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rdzv06jnr3z33s7qll5k.png) 您的語音控制 Mac 助理。 GPT Automator 可讓您使用語音在 Mac 上執行任務。例如,打開應用程式、尋找餐廳、綜合資訊。太棒了:D 它是在倫敦黑客馬拉松期間建構的。 它有兩個主要部分: A。語音命令:它使用本地執行的 Whisper(Buzz 的一個分支)來產生命令。 b.命令到行動:您向配備了我們編寫的自訂工具的 LangChain 代理程式發出命令。這些工具包括使用 AppleScript 控制電腦的作業系統以及使用 JavaScript 控制活動瀏覽器。最後,就像任何優秀的人工智慧一樣,我們讓代理商使用 AppleScript 說出最終結果「{Result}」(如果您以前沒有使用過,請嘗試在 Mac 終端機中輸入「Hello World!」)。 我們製作了一個自訂工具,讓法學碩士使用 AppleScript 控制電腦。提示符是文件字串: ``` @tool def computer_applescript_action(apple_script): """ Use this when you want to execute a command on the computer. The command should be in AppleScript. Here are some examples of good AppleScript commands: Command: Create a new page in Notion AppleScript: tell application "Notion" activate delay 0.5 tell application "System Events" to keystroke "n" using {{command down}} end tell ... Write the AppleScript for the Command: Command: """ p = subprocess.Popen(['osascript', '-'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate(applescript.encode('utf-8')) if p.returncode != 0: raise Exception(stderr) decoded_text = stdout.decode("utf-8") return decoded_text ``` 如果您想知道它是如何運作的,GPT Automator 使用 OpenAI 的 Whisper 將您的音訊輸入轉換為文字。然後,它使用LangChain Agent 選擇一組操作,包括使用OpenAI 的GPT-3(“text-davinci-003”)從提示符號產生AppleScript(用於桌面自動化)和JavaScript(用於瀏覽器自動化)命令,然後執行產生的腳本。 請記住,這不適用於生產用途。該專案執行從自然語言產生的程式碼,可能容易受到提示注入和類似的攻擊。這項工作是作為概念驗證而進行的。 您可以閱讀[安裝指南](https://github.com/chidiwilliams/GPT-Automator?tab=readme-ov-file#instructions)。 讓我們看看一些提示及其作用: ⚡ 求計算結果。 > 提示:“2 + 2 是什麼?” 它將編寫 AppleScript 開啟計算器並輸入 5 \* 5。 ⚡ 尋找附近的餐廳。 > 提示:“查找我附近的餐廳” 它將打開 Chrome,谷歌搜尋附近的餐廳,解析頁面,然後返回最上面的結果。有時它很厚顏無恥,反而會打開谷歌地圖結果並說「最好的餐廳是谷歌地圖頁面頂部的餐廳」。其他時候,它會打開 Google 上的頂部連結 - 並卡在 Google 可存取性頁面上... 以下是執行時列印到終端的內容: ``` Command: Find a great restaurant near Manchester. > Entering new AgentExecutor chain... I need to search for a restaurant near Manchester. Action: chrome_open_url Action Input: https://www.google.com/search?q=restaurant+near+Manchester Observation: Thought: I need to read the page Action: chrome_read_the_page Action Input: Observation: Accessibility links Skip to main content ... # Shortned for brevity Dishoom Manchester 4.7 (3.3K) · £££ · Indian 32 Bridge St · Near John Rylands Library Closes soon ⋅ 11 pm Stylish eatery for modern Indian fare San Carlo 4.2 (2.8K) · £££ · Italian 42 King St W · Near John Rylands Library Closes soon ⋅ 11 pm Posh, sceney Italian restaurant Turtle Bay Manchester Northern Quarter 4.7 Thought: I now know the final answer Final Answer: The 15 best restaurants in Manchester include El Gato Negro, Albert's Schloss, The Refuge, Hawksmoor, On The Hush, Dishoom, Banyan, Zouk Tea Room & Grill, Edison Bar, MyLahore Manchester, Turtle Bay Manchester Northern Quarter, San Carlo, The Black Friar, Mana, and Tast Cuina Catalana. ``` 我不能保證這些餐廳值得,請自行承擔風險。哈哈! ⚡ 如果您要求 GPT Automator 擦除您的計算機,它會的。 是的,如果您要求的話,它會擦除您的電腦! 我內心的自我尖叫著要這麼做:) 您可以在這裡查看完整的演示! {% 嵌入 https://www.loom.com/share/7bfa82c604f3412fbbb04191ce2ae12f %} 您可以在[Chidi 的部落格](https://chidiwilliams.com/posts/gpt-automator)上閱讀更多內容。 它更像是一個業餘專案,因此他們在 GitHub 上有大約 200 個 star,但它非常酷。 您可以檢查[GitHub 儲存庫](https://github.com/chidiwilliams/GPT-Automator)。 ✅ [Instrukt](https://github.com/blob42/Instrukt) - 終端中整合人工智慧。 ------------------------------------------------------------- ![指示](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/wsk64pf5yuosui91tmz9.png) Instrukt是一個基於終端的AI整合環境。它提供了一個平台,用戶可以: - 建立並指導模組化人工智慧代理。 - 產生問答的文件索引。 - 建立工具並將其附加到任何代理程式。 用自然語言指導它們,並且為了安全起見,在安全容器(目前使用 Docker 實作)中執行它們,以在其專用的沙盒空間中執行任務。 使用`Langchain` 、 `Textual`和`Chroma`建構。 開始使用以下命令。 ``` pip install instrukt[all] ``` ![指示](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/r3aza7hnlji7hbi2o0js.gif) 有許多令人興奮的功能,例如: - 基於終端的介面,讓強力鍵盤使用者無需離開鍵盤即可指示 AI 代理。 - 對您的資料建立索引並讓代理程式檢索它以進行問答。您可以使用簡單的 UI 建立和組織索引。 - 索引建立將自動偵測程式語言並相應地優化拆分/分塊策略。 - 在安全的 Docker 容器內執行代理程式以確保安全和隱私。 - 整合的 REPL-Prompt 可實現與代理程式的快速交互,以及用於開發和測試的快速回饋循環。 - 您可以使用自訂命令自動執行重複任務。它還具有內建的提示/聊天歷史記錄。 您可以閱讀有關所有[功能的](https://github.com/blob42/Instrukt?tab=readme-ov-file#features)資訊。 您可以閱讀[安裝指南](https://blob42.github.io/Instrukt/install.html)。 您還可以使用內建的 IPython 控制台來除錯和內省代理,這是一個簡潔的小功能。 ![控制台除錯](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qaan8np68e3fk1yueexm.png) Instrukt 已獲得 AGPL 許可證,這意味著任何人都可以將其用於任何目的。 可以肯定地說,Instrukt 是您觸手可及的終端人工智慧指揮官。 這是一個新專案,因此他們在 GitHub 上有大約 200 多顆星,但用例非常好。 您可以檢查[GitHub 儲存庫](https://github.com/blob42/Instrukt)。 ✅ [ChatFiles](https://github.com/guangzhengli/ChatFiles) - 上傳您的檔案並與其對話。 ----------------------------------------------------------------------- ![聊天文件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/lhimajsma8ijyzeknmlg.png) 文件聊天機器人 — 多個文件,由 GPT / Embedding 提供支援。你可以上傳任何文件並與之對話,考慮到他們使用了另一個著名的開源專案,UI 非常好。 它在底層使用 Langchain 和[Chatbot-ui](https://github.com/mckaywrigley/chatbot-ui) 。使用 Nextjs、TypeScript、Tailwind 和 Supabase(向量 DB)建構。 如果您想了解該方法和技術架構,那麼就在這裡! ![建築學](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/8zbn7h50k6gwxgz6rkaf.png) 此環境僅用於試用,支援最大檔案大小為 10 MB,這是一個缺點,如果您想要更大的大小,則可以[在本機安裝](https://github.com/guangzhengli/ChatFiles?tab=readme-ov-file#how-to-run-locally)。 他們提供了您可以使用的[入門問題](https://github.com/guangzhengli/ChatFiles/blob/main/doc/Example.md)。您可以查看[現場演示](https://chatfile.vectorhub.org/)。 他們在 GitHub 上有 3k star,並且發布了`v0.3`版本。 您可以檢查[GitHub 儲存庫](https://github.com/guangzhengli/ChatFiles)。 ✅ [具有多代理協作的終極人工智慧自動化 - LangGraph + GPT 研究人員](https://blog.langchain.dev/how-to-build-the-ultimate-ai-automation-with-multi-agent-collaboration/)。 ------------------------------------------------------------------------------------------------------------------------------------------------- LangGraph 是一個使用 LLM 建立有狀態、多參與者應用程式的函式庫。此範例使用 Langgraph 自動化對任何給定主題的深入研究過程。 簡而言之,這個範例展示了人工智慧代理團隊如何協同工作,對給定主題進行從規劃到發布的研究。此範例還將利用領先的自主研究代理[GPT Researcher](https://github.com/assafelovic/gpt-researcher) ,我已在過去的一篇文章中介紹過該代理。 研究團隊由七名法學碩士代理人: ⚡ `Chief Editor` - 監督研究過程並管理團隊。這是使用 LangGraph 協調其他代理程式的「主」代理程式。該代理充當主要的 LangGraph 介面。 ⚡ `GPT Researcher` - 專門的自主代理,對給定主題進行深入研究。 ⚡ `Editor` - 負責規劃研究大綱和結構。 ⚡ `Reviewer` - 根據一組標準驗證研究結果的正確性。 ⚡ `Reviser` - 根據審查者的回饋修改研究結果。 ⚡ `Writer` - 負責編譯和撰寫最終報告。 ⚡ `Publisher` - 負責以各種格式發布最終報告。 自動化過程基於以下階段(架構),文章中清楚地顯示了這一點。 - 策劃階段。 - 資料收集和分析。 - 審查和修訂。 - 寫作並提交。 - 出版品. ![建築學](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/zwpvlf859m9c6v8mttxk.png) 您可以閱讀有關正在發生的事情的[詳細步驟文件](https://github.com/assafelovic/gpt-researcher/tree/master/multi_agents?ref=blog.langchain.dev#steps)。 助手的最終運作將產生 Markdown、PDF 和 Docx 等格式的最終研究報告。 您可以閱讀這篇文章,其中介紹[如何透過多代理協作來建立終極人工智慧自動化](https://blog.langchain.dev/how-to-build-the-ultimate-ai-automation-with-multi-agent-collaboration/),其中 Wix 研發主管 Assaf Elovic 介紹如何使用 LangGraph 與專業代理團隊建立自主研究助理。它具有易於理解的程式碼範例,並清楚地說明正在發生的事情。開發者必讀! 最好的部分是,如果您想更改研究查詢並自訂報告,只需編輯主目錄中的`task.json`檔案。真的很棒:) 它由 GPT 研究人員負責,擁有 10k 顆星,但自從上次提交是在幾天前以來,它經常更新。 您可以檢查[GitHub 儲存庫](https://github.com/assafelovic/gpt-researcher/tree/master/multi_agents)。 ✅[僚機AI](https://github.com/e-johnstonn/wingmanAI) 。 --------------------------------------------------- ![僚機人工智慧](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ortnj43j63gx4riqvl4x.png) WingmanAI 是一款功能強大的工具,可與系統和麥克風音訊的即時轉錄進行互動。 它使用 ChatGPT,讓您與文字記錄即時交互,作為機器人的廣泛記憶體基礎,提供獨特的通訊平台。 當您載入指定人員的文字記錄時,機器人甚至可以回答有關過去對話的問題。 所有精彩功能的詳細介紹: ⚡ 它可以轉錄系統輸出和麥克風輸入音頻,讓您以易於閱讀的格式查看即時轉錄。 ⚡ 機器人以令牌有效的方式維護對話記錄,因為只有當前的文字區塊會傳遞給機器人。 ⚡ 您可以與 ChatGPT 支援的機器人聊天,機器人會即時讀取您的文字記錄。 ⚡ 您可以繼續附加到已儲存的記錄中,隨著時間的推移建立一個龐大的資料庫供機器人從中提取。 ⚡ 它允許您保存成績單以供將來使用。您可以稍後隨時加載它們,並且對機器人進行的任何查詢都將與保存的轉錄本的向量資料庫交叉引用,從而為機器人提供更豐富的上下文。 您可以閱讀[安裝說明](https://github.com/e-johnstonn/wingmanAI?tab=readme-ov-file#installation)。 您只需將 OpenAI API 金鑰放入`keys.env`檔案中並執行`main.py` 。 唯一的缺點是該應用程式目前僅與 Windows 相容。 Windows 用戶現在更高興了:) 您可以觀看[完整的示範影片](https://github.com/e-johnstonn/wingmanAI?tab=readme-ov-file#demo)。由於限制,下面所附的 gif 很短(86 秒中只有 30 秒)。 ![30 秒演示 gif](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/gmosnsbwkkb76q83y46i.gif) 我對這個概念感到非常驚訝,因為我從來沒有想過它可以以這種方式實現。當開發人員用非常簡單的概念創造出一些很酷的東西時,感覺真的很棒:) 它在 GitHub 上有 420 多顆星,並且不再維護。但你可以用它來建造更好的東西。 您可以檢查[GitHub 儲存庫](https://github.com/e-johnstonn/wingmanAI)。 ✅[考試](https://github.com/codeacme17/examor)。 -------------------------------------------- ![前愛](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/x4fh09yrwhnalr1oxgv4.png) 一款允許您根據知識筆記參加考試的應用程式。它可以讓您專注於您所學和所寫的內容🧠。 它不斷提示您提出問題以複習筆記內容,這對於學生、學者、受訪者和終身學習者非常有用。 專案管理員正在使用 next.js 重構專案,這對於使用`next.js`開發人員來說非常好。 讓我們來詳細分析一下一些很棒的功能: ⚡ 建立筆記時可以上傳相關文件。該應用程式根據這些文件的內容產生一組問題。這些問題將在未來呈現給大家。建立筆記時,您作為使用者還可以選擇要產生的問題類型。 ![問題選擇](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rp5seq1zpotaxej6dj6l.png) ⚡ 收到每日問題後,您可以提供答案。 GPT 將評分、驗證並提供正確答案。透過評估答案和連結文件的正確性來確定分數(0 ~ 10 分)。這個分數會影響隨後的艾賓浩斯評審過程。將會在未來的發布版本中進行最佳化。 ⚡ 角色可以為問題產生和評估提供更多可能性。您可以在設定頁面上設定角色。有關各種角色的更多訊息,建議參閱詳細的[角色手冊指南](https://github.com/codeacme17/examor/blob/main/docs/en-role.md)。 ![角色選擇](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/n0zdohzkowcdrdnxjzba.png) ⚡ 練習問題時,可以用不同的方法作答。下圖顯示了單選題的範例。 ![回答問題](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/yzg8vvuxndhw9v2s1x8c.png) ⚡ 它有一個包含多個[模組](https://github.com/codeacme17/examor?tab=readme-ov-file#-modules)的列表,例如`Examine` 、 `Note` 、 `Notes Management`和`Random Question`使用這些模組您可以在筆記中導入問題,刪除或加入新文件到上傳的筆記中,等等。 我喜歡整個概念,這會引起任何曾經面臨過修改筆記問題的人的注意。 您可以閱讀包含如何正確使用它的詳細指南的[文件](https://github.com/codeacme17/examor/blob/main/README.md)。 它在 GitHub 上有 1k star,目前版本為`v0.4.2` 。 您可以檢查[GitHub 儲存庫](https://github.com/codeacme17/examor)。 ✅[語音GPT](https://github.com/hahahumble/speechgpt) 。 --------------------------------------------------- ![語音GPT](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/on0exhy65owc13tzue0v.png) ![語音GPT](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4rrge2nyhowtcdyd3gi5.png) SpeechGPT 是一個 Web 應用程式,可讓您與 ChatGPT 進行對話。 您可以利用此應用程式來提高您的語言技能,或只是透過 ChatGPT 享受聊天的樂趣。 大多數人會說這有什麼獨特之處,但事實確實如此。 讓我們來打破一些很棒的功能: ⚡ 所有資料儲存在本地,隱私性更強。 ⚡ 根據文件,它支援 100 多種語言,但我在現場演示中只能看到對三種語言的支援。 ![語言](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/g6e7jsrhmvrdlidyvnho.png) ⚡ 包含內建語音辨識以及與 Azure 語音服務的整合。 ![語音辨識](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/gr2vsaymy50wtiperprd.png) ⚡ 包含內建語音合成,以及與 Amazon Polly 和 Azure 語音服務的整合。 ![語音合成](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/2m3kp9othpa9rbb4it57.png) 請按照[文件中的教學](https://github.com/hahahumble/speechgpt?tab=readme-ov-file#-tutorial)了解如何使用它。 您可以在[speechgpt.app](https://speechgpt.app/)上觀看現場演示。這是一個完美的例子,說明了一些額外的功能如何將您的應用程式提升到一個新的水平! SpeechGPT 在 GitHub 上有 2700 顆星,目前版本為`v0.5.1` 。 您可以檢查[GitHub 儲存庫](https://github.com/hahahumble/speechgpt)。 ✅ [myGPTReader](https://github.com/madawei2699/myGPTReader) - 閱讀並與 AI 機器人聊天。 ---------------------------------------------------------------------------- ![我的GPT閱讀器](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/58doii8daomf54te5eca.png) myGPTReader 是 Slack 上的機器人,可以閱讀和總結任何網頁、文件(包括電子書),甚至來自 YouTube 的影片。它可以透過語音與您交流。 一些有價值的功能是: ⚡ 使用 myGPTReader 透過對話快速閱讀和理解任何網頁內容,甚至是影片(目前僅支援帶有字幕的 YouTube 影片)。 ![讀者](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/x626mtnvqr5vw43938iw.gif) ⚡ 使用 myGPTReader 快速閱讀任何文件的內容,支援電子書、PDF、DOCX、TXT 和 Markdown。 ![文件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5am7njxco7vhronuirgu.gif) ⚡ 透過與 myGPTReader 語音對話來練習外語,它可以成為您的私人導師,支援中文、英語、德語和日語。 ![嗓音](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/40pzlgtuhcyxgwa1z2gs.gif) ⚡ 內建大量提示模板,使用它們可以更好地與chatGPT對話。 ![問](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ehgn218hwewzeft98xkp.gif) ⚡ myGPTReader 每天發送最新熱點新聞,並自動產生摘要,讓您快速了解今日熱點。 您可以造訪[官方網站](https://www.myreader.io/)。 您可以加入擁有超過 5000 名會員的儲存庫上的 Slack 頻道,免費體驗所有這些功能。 它們在 GitHub 上有 4.4k 顆星,並且像此列表中的其他專案一樣使用 Python 建置。 您可以檢查[GitHub 儲存庫](https://github.com/madawei2699/myGPTReader)。 ✅ [RepoChat](https://github.com/pnkvalavala/repochat) - 支援 GitHub 儲存庫互動的聊天機器人助理。 -------------------------------------------------------------------------------- ![重新聊天](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/3gf9bjn2a47f1t43aiju.png) Repochat 是一個互動式聊天機器人專案,旨在使用大型語言模型 (LLM) 參與有關 GitHub 儲存庫的對話。 它允許用戶進行有意義的討論、提出問題並從 GitHub 儲存庫檢索相關資訊。本自述文件提供了在本機電腦上設定和使用 Repochat 的逐步說明。 他們建立了兩個具有不同功能的分支,這對我來說有點新鮮。 ⚡ Repochat 的主要分支被設計為完全在本機上執行。此版本的 Repochat 不依賴外部 API 呼叫,並且可以更好地控制您的資料和處理。如果您正在尋找獨立的解決方案,那麼主分支就是您的最佳選擇。 ⚡ Repochat 的雲端分支主要依賴對外部服務的 API 呼叫來進行模型推理和儲存。它非常適合那些喜歡基於雲端的解決方案並且不想設定本地環境的人。 您可以閱讀[安裝說明](https://github.com/pnkvalavala/repochat?tab=readme-ov-file#installation)。 Repochat 讓您與聊天機器人進行對話。您可以提出問題或提供輸入,聊天機器人將從向量資料庫中檢索相關文件。 然後,它將您的輸入以及檢索到的文件傳送到語言模型以產生回應。 預設情況下,我已將模型設為`codellama-7b-instruct` ,但您可以根據計算機的速度更改它,甚至可以嘗試 13b 量化模型進行回應。 聊天機器人在對話過程中保留記憶以提供上下文相關的回應。 您可以查看[即時網站](https://repochat.streamlit.app/),您可以使用 API 金鑰進行檢查。 你可以觀看這個演示! ![示範](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/o7ndxqpwkkww4f5qudiq.gif) 如果您想查看的話,我找到了另一種[選擇](https://github.com/peterw/Chat-with-Github-Repo)。 Repochat 擁有 200 多顆星,並部署在 Streamlit 上。 您可以檢查[GitHub 儲存庫](https://github.com/pnkvalavala/repochat)。 ✅ [NextChat - ChatGPT Next Web](https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web) 。 ------------------------------------------------------------------------------------- ![下次聊天](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/lnuqjkfcyz8z7kejgbb1.png) 這不是一個典型的副專案,因為程式碼庫足夠大,但值得一看作為靈感。 您只需一鍵即可獲得精心設計的跨平台 ChatGPT Web UI,支援 GPT3、GPT4 和 Gemini Pro(Web / PWA / Linux / Win / MacOS)。 一些很棒的功能是: ⚡ 隱私 首先,所有資料都儲存在瀏覽器本地。 ⚡ 首屏載入速度快(~100kb),支援串流響應。 ⚡ 自動壓縮聊天歷史記錄以支援長時間對話,同時儲存您的代幣。 ⚡ Linux/Windows/MacOS 上的緊湊型用戶端 (~5MB)。 ⚡ 您只需在 Vercel 上一鍵點擊即可在 1 分鐘內免費部署。 ⚡ 與自行部署的法學碩士完全相容。 ⚡ Markdown 支援:LaTex、mermaid、程式碼高亮等。 ![下次聊天](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/2uvdfwz1rgy1l2l4pb9p.png) 您可以查看 NextChat 的[現場演示](https://app.nextchat.dev/)和[文件,](https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web?tab=readme-ov-file#roadmap)其中包括所有環境變數(主要是 API 金鑰)的清單。 ![下次聊天](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/fqykjwgjf35khapdfu20.png) 在本地處理它並不難,他們還提供了 GitHub 操作工作流程,每小時都會自動更新。 NextChat 在 GitHub 上擁有 69k+ 顆星,目前已發布`v2.2`版本。 您可以檢查[GitHub 儲存庫](https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web)。 --- 如果您喜歡觀看教程來建立專案,我有一些很好的建議。 🎯 [LangChain GEN AI 教學 – 使用 OpenAI、Google Gemini Pro、LLAMA2 的 6 個端到端專案](https://www.youtube.com/watch?v=x0AnCE9SE4A)– 4 小時。 本教學涵蓋的專案: ✅ LangChain 速成課程 - 打下基礎。 ✅ 使用 Langchain 和 Astradb 與 PDF 聊天。 ✅ 使用 Llama 2 LLM 模型產生部落格。 ✅ 使用 Pinecone VectorDB 的端到端法學碩士課程。 ✅ Google Gemini 專業版示範。 ✅ 多語言發票提取器 LLM 專案。 ✅ 使用 Gemini Pro API 的對話式問答聊天機器人。 {% 嵌入 https://www.youtube.com/watch?v=x0AnCE9SE4A %} 🎯 Streamlit 的 LangChain 速成課程。 本教學涵蓋的專案: ✅ 發票資料提取器。 ✅ 針對自訂資料的基本 QA。 ✅ 總結和有用的鏈類型。 ✅ WordPress 程式碼助理。 ✅ 將語音備忘錄轉換為文字。 你可以找到[速成課程](https://learnlangchain.streamlit.app/)。側邊欄中將有一個關於實踐專案的部分! --- 這麼多很棒的專案:) 但說實話,我見過很多開發人員建立相同的應用程式,您可以獲得無限的靈感。我希望你喜歡這個。 繼續,保存它,並建造每一個,以展示誰是技術老大! 讓我知道哪個專案最讓你驚訝。 祝你有美好的一天!直到下一次。 |如果你喜歡這類東西, 請關注我以了解更多:) | [![用戶名 Anmol_Codes 的 Twitter 個人資料](https://img.shields.io/badge/Twitter-d5d5d5?style=for-the-badge&logo=x&logoColor=0A0209)](https://twitter.com/Anmol_Codes) [![用戶名 Anmol-Baranwal 的 GitHub 個人資料](https://img.shields.io/badge/github-181717?style=for-the-badge&logo=github&logoColor=white)](https://github.com/Anmol-Baranwal) [![用戶名 Anmol-Baranwal 的 LinkedIn 個人資料](https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/Anmol-Baranwal/) | |------------|----------| 請關注 Copilotkit 以獲取更多此類內容。 {% 嵌入 https://dev.to/copilotkit %} --- 原文出處:https://dev.to/copilotkit/20-projects-you-can-build-with-ai-today-352k

AI 驅動的前端 UI 元件產生器(Next.js、GPT4、Langchain 和 CopilotKit)

**長話短說** -------- 在本文中,您將了解如何建立由 AI 驅動的前端 UI 元件產生器,該產生器使您能夠透過實作教學產生 Next.js Tailwind CSS UI 元件。 我們將介紹如何: - 使用 Next.js、TypeScript 和 Tailwind CSS 建立 UI 元件產生器 Web 應用程式。 - 使用 CopilotKit 將 AI 功能整合到 UI 元件產生器中。 - 整合嵌入式程式碼編輯器以變更產生的程式碼。 先決條件 ---- 要完全理解本教程,您需要對 React 或 Next.js 有基本的了解。 以下是建立 AI 支援的 UI 元件產生器所需的工具: - [Ace 程式碼編輯器](https://ace.c9.io/)- 用 JvaScript 編寫的嵌入式程式碼編輯器,與本機編輯器的功能和效能相符。 - [Langchain](https://www.langchain.com/) - 提供了一個框架,使人工智慧代理能夠搜尋網路並研究任何主題。 - [OpenAI API](https://platform.openai.com/api-keys) - 提供 API 金鑰,讓您能夠使用 ChatGPT 模型執行各種任務。 - [Tavily AI](https://tavily.com/) - 一個搜尋引擎,使人工智慧代理能夠在應用程式中進行研究並存取即時知識。 - [CopilotKit](https://github.com/CopilotKit) - 一個開源副駕駛框架,用於建立自訂 AI 聊天機器人、應用程式內 AI 代理程式和文字區域。 專案設定和套件安裝 --------- 首先,透過在終端機中執行以下程式碼片段來建立 Next.js 應用程式: ``` npx create-next-app@latest aiuigenerator ``` 選擇您首選的配置設定。在本教學中,我們將使用 TypeScript 和 Next.js App Router。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0c2uq47mrd3ppxqvr1v7.png) 接下來,安裝 Ace 程式碼編輯器和 Langchain 軟體套件及其相依性。 ``` npm install react-ace @langchain/langgraph ``` 最後,安裝 CopilotKit 軟體套件。這些套件使我們能夠從 React 狀態檢索資料並將 AI copilot 新增至應用程式。 ``` npm install @copilotkit/react-ui @copilotkit/react-textarea @copilotkit/react-core @copilotkit/backend ``` 恭喜!您現在已準備好建立由人工智慧驅動的部落格。 **建構 UI 元件產生器前端** ----------------- 在本節中,我將引導您完成使用靜態內容建立 UI 元件產生器前端的過程,以定義生成器的使用者介面。 首先,請在程式碼編輯器中前往`/[root]/src/app`並建立一個名為`components`的資料夾。在 Components 資料夾中,建立兩個名為`Header.tsx`和`CodeTutorial.tsx`的檔案。 在`Header.tsx`檔案中,新增以下程式碼,定義一個名為`Header`的功能元件,該元件將呈現生成器的導覽列。 ``` "use client"; import Link from "next/link"; export default function Header() { return ( <> <header className="flex flex-wrap sm:justify-start sm:flex-nowrap z-50 w-full bg-gray-800 border-b border-gray-200 text-sm py-3 sm:py-0 "> <nav className="relative max-w-7xl w-full mx-auto px-4 sm:flex sm:items-center sm:justify-between sm:px-6 lg:px-8" aria-label="Global"> <div className="flex items-center justify-between"> <Link className="w-full flex-none text-xl text-white font-semibold p-6" href="/" aria-label="Brand"> AI-UI-Components-Generator </Link> </div> </nav> </header> </> ); } ``` 在`CodeTutorial.tsx`檔案中,加入以下程式碼,定義一個名為`CodeTutorial`的功能元件,該元件呈現 UI 元件產生器主頁,該首頁將顯示產生的 UI 元件、嵌入式程式碼編輯器和產生的實作教學。 ``` "use client"; import Markdown from "react-markdown"; import { useState } from "react"; import AceEditor from "react-ace"; import React from "react"; export default function CodeTutorial() { const [code, setCode] = useState<string[]>([ `<h1 class="text-red-500">Hello World</h1>`, ]); const [codeToDisplay, setCodeToDisplay] = useState<string>(code[0] || ""); const [codeTutorial, setCodeTutorial] = useState(``); function onChange(newCode: any) { setCodeToDisplay(newCode); } return ( <> <main className=" min-h-screen px-4"> <div className="w-full h-full min-h-[70vh] flex justify-between gap-x-1 "> <div className="w-2/3 min-h-[60vh] rounded-lg bg-white shadow-lg p-2 border mt-8 overflow-auto"> <div className="w-full min-h-[60vh] rounded-lg" dangerouslySetInnerHTML={{ __html: codeToDisplay }} /> </div> <AceEditor placeholder="Placeholder Text" mode="html" theme="monokai" name="blah2" className="w-[50%] min-h-[60vh] p-2 mt-8 rounded-lg" onChange={onChange} fontSize={14} lineHeight={19} showPrintMargin={true} showGutter={true} highlightActiveLine={true} value={codeToDisplay} setOptions={{ enableBasicAutocompletion: true, enableLiveAutocompletion: true, enableSnippets: false, showLineNumbers: true, tabSize: 2, }} /> </div> <div className="w-10/12 mx-auto"> <div className="mt-8"> <h1 className="text-white text-center text-xl font-semibold p-6"> Code Tutorial </h1> {codeTutorial ? ( <Markdown className="text-white">{codeTutorial}</Markdown> ) : ( <div className="text-white"> The Code Tutorial Will Appear Here </div> )} </div> </div> </main> </> ); } ``` 接下來,前往`/[root]/src/page.tsx`文件,新增以下程式碼,導入`CodeTutorial`和`Header`元件,並定義名為`Home`的功能元件。 ``` import React from "react"; import Header from "./components/Header"; import CodeTutorial from "./components/CodeTutorial"; export default function Home() { return ( <> <Header /> <CodeTutorial /> </> ); } ``` 接下來,刪除 globals.css 檔案中的 CSS 程式碼並新增以下 CSS 程式碼。 ``` @tailwind base; @tailwind components; @tailwind utilities; @tailwind base; @tailwind components; @tailwind utilities; body { height: 100vh; background-color: rgb(16, 23, 42); } pre { margin: 1rem; padding: 1rem; border-radius: 10px; background-color: black; overflow: auto; } h2, p { padding-bottom: 1rem; padding-top: 1rem; } code { margin-bottom: 2rem; } ``` 最後,在命令列上執行命令`npm run dev` ,然後導航到 http://localhost:3000/。 現在您應該在瀏覽器上查看 UI 元件產生器前端,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/id9z3bizkb2bghbe4bxb.png) **使用 CopilotKit 將 AI 功能整合到元件產生器** --------------------------------- 在本節中,您將學習如何為 UI 元件產生器新增 AI 副駕駛以產生 UI 元件程式碼以及使用 CopilotKit 的實作教學。 CopilotKit 提供前端和[後端](https://docs.copilotkit.ai/getting-started/quickstart-backend)套件。它們使您能夠插入 React 狀態並使用 AI 代理在後端處理應用程式資料。 首先,讓我們將 CopilotKit React 元件加入到部落格前端。 ### **將 CopilotKit 新增至部落格前端** 在這裡,我將引導您完成將 UI 元件產生器與 CopilotKit 前端整合的過程,以方便產生 UI 元件程式碼和實作教學。 首先,使用下面的程式碼片段導入`/[root]/src/app/components/CodeTutorial.tsx`檔案頂部的自訂掛鉤`useMakeCopilotReadable`和`useCopilotAction` 。 ``` import { useCopilotAction, useMakeCopilotReadable, } from "@copilotkit/react-core"; ``` 在`CodeTutorial`函數內的狀態變數下方,加入以下程式碼,該程式碼使用`useMakeCopilotReadable`掛鉤來新增將作為應用程式內聊天機器人的上下文產生的程式碼。該鉤子使副駕駛可以讀取程式碼。 ``` useMakeCopilotReadable(codeToDisplay); ``` 在上面的程式碼下方,新增以下程式碼,該程式碼使用`useCopilotAction`掛鉤來設定名為`generateCodeAndImplementationTutorial`的操作,該操作將啟用 UI 元件程式碼和實作教學課程的產生。 這個操作接受兩個參數,稱為`code`和`tutorial` ,這兩個參數可以產生 UI 元件程式碼和實作教程。 該操作包含一個處理函數,該函數根據給定的提示產生 UI 元件程式碼和實作教程。 在處理函數內部, `codeToDisplay`狀態會使用新產生的程式碼進行更新,而`codeTutorial`狀態會使用新產生的教學課程進行更新,如下所示。 ``` useCopilotAction( { name: "generateCodeAndImplementationTutorial", description: "Create Code Snippet with React.js(Next.js), tailwindcss and an implementation tutorial of the code generated.", parameters: [ { name: "code", type: "string", description: "Code to be generated", required: true, }, { name: "tutorial", type: "string", description: "Markdown of step by step guide tutorial on how to use the generated code accompanied with the code. Include introduction, prerequisites and what happens at every step accompanied with code generated earlier. Don't forget to add how to render the code on browser.", required: true, }, ], handler: async ({ code, tutorial }) => { setCode((prev) => [...prev, code]); setCodeToDisplay(code); setCodeTutorial(tutorial); }, }, [codeToDisplay, codeTutorial] ); ``` 之後,請前往`/[root]/src/app/page.tsx`檔案並使用下面的程式碼匯入頂部的 CopilotKit 前端套件和樣式。 ``` import { CopilotKit } from "@copilotkit/react-core"; import { CopilotSidebar } from "@copilotkit/react-ui"; import "@copilotkit/react-ui/styles.css"; ``` 然後使用`CopilotKit`包裝`CopilotSidebar`和`CodeTutorial`元件,如下所示。 `CopilotKit`元件指定 CopilotKit 後端端點 ( `/api/copilotkit/` ) 的 URL,而`CopilotSidebar`呈現應用程式內聊天機器人,您可以提示產生 UI 元件程式碼和實作教學。 ``` export default function Home() { return ( <> <Header /> <CopilotKit url="/api/copilotkit"> <CopilotSidebar instructions="Help the user generate code. Ask the user if to generate its tutorial." defaultOpen={true} labels={{ title: "Code & Tutorial Generator", initial: "Hi! 👋 I can help you generate code and its tutorial.", }}> <CodeTutorial /> </CopilotSidebar> </CopilotKit> </> ); } ``` 之後,執行開發伺服器並導航到 http://localhost:3000。您應該會看到應用程式內聊天機器人已整合到 UI 元件產生器中。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ty4g6tuluhfiqtnnyxvg.png) ### **將 CopilotKit 後端加入博客** 在這裡,我將引導您完成將 UI 元件產生器與 CopilotKit 後端整合的過程,該後端處理來自前端的請求,並提供函數呼叫和各種 LLM 後端(例如 GPT)。 此外,我們將整合一個名為 Tavily 的人工智慧代理,它可以研究網路上的任何主題。 首先,在根目錄中建立一個名為`.env.local`的檔案。然後在保存`ChatGPT`和`Tavily` Search API 金鑰的檔案中加入下面的環境變數。 ``` OPENAI_API_KEY="Your ChatGPT API key" TAVILY_API_KEY="Your Tavily Search API key" ``` 若要取得 ChatGPT API 金鑰,請導覽至 https://platform.openai.com/api-keys。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/mjl2g88iedd1n0qkd3ai.png) 若要取得 Tavilly Search API 金鑰,請導覽至 https://app.tavily.com/home ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/m00kyux6biskw7xn2wec.png) 之後,轉到`/[root]/src/app`並建立一個名為`api`的資料夾。在`api`資料夾中,建立一個名為`copilotkit`的資料夾。 在`copilotkit`資料夾中,建立一個名為`research.ts`的檔案。然後導航到[該 Research.ts gist 文件](https://gist.github.com/TheGreatBonnie/58dc21ebbeeb8cbb08df665db762738c),複製程式碼,並將其新增至**`research.ts`**檔案中 接下來,在`/[root]/src/app/api/copilotkit`資料夾中建立一個名為`route.ts`的檔案。該文件將包含設定後端功能來處理 POST 請求的程式碼。它有條件地包括對給定主題進行研究的“研究”操作。 現在在文件頂部導入以下模組。 ``` import { CopilotBackend, OpenAIAdapter } from "@copilotkit/backend"; // For backend functionality with CopilotKit. import { researchWithLangGraph } from "./research"; // Import a custom function for conducting research. import { AnnotatedFunction } from "@copilotkit/shared"; // For annotating functions with metadata. ``` 在上面的程式碼下面,定義一個執行時間環境變數和一個名為`researchAction`的函數,該函數使用下面的程式碼研究某個主題。 ``` // Define a runtime environment variable, indicating the environment where the code is expected to run. export const runtime = "edge"; // Define an annotated function for research. This object includes metadata and an implementation for the function. const researchAction: AnnotatedFunction<any> = { name: "research", // Function name. description: "Call this function to conduct research on a certain topic. Respect other notes about when to call this function", // Function description. argumentAnnotations: [ // Annotations for arguments that the function accepts. { name: "topic", // Argument name. type: "string", // Argument type. description: "The topic to research. 5 characters or longer.", // Argument description. required: true, // Indicates that the argument is required. }, ], implementation: async (topic) => { // The actual function implementation. console.log("Researching topic: ", topic); // Log the research topic. return await researchWithLangGraph(topic); // Call the research function and return its result. }, }; ``` 然後在上面的程式碼下加入下面的程式碼來定義處理POST請求的非同步函數。 ``` // Define an asynchronous function that handles POST requests. export async function POST(req: Request): Promise<Response> { const actions: AnnotatedFunction<any>[] = []; // Initialize an array to hold actions. // Check if a specific environment variable is set, indicating access to certain functionality. if (process.env.TAVILY_API_KEY) { actions.push(researchAction); // Add the research action to the actions array if the condition is true. } // Instantiate CopilotBackend with the actions defined above. const copilotKit = new CopilotBackend({ actions: actions, }); // Use the CopilotBackend instance to generate a response for the incoming request using an OpenAIAdapter. return copilotKit.response(req, new OpenAIAdapter()); } ``` 如何產生 UI 元件 ---------- 現在轉到您之前整合的應用程式內聊天機器人,並給它一個提示,例如「產生聯絡表單」。 生成完成後,您應該會看到生成的聯絡表單元件及其實作教程,如下所示。您也可以使用嵌入式程式碼編輯器修改產生的程式碼。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/43t9oauptomio4cy1gwr.png) ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/297vxxiqti56ydevfmyl.png) 恭喜!您已完成本教學的專案。 結論 -- [CopilotKit](https://copilotkit.ai/)是一款令人難以置信的工具,可讓您在幾分鐘內將 AI Copilot 加入到您的產品中。無論您是對人工智慧聊天機器人和助理感興趣,還是對複雜任務的自動化感興趣,CopilotKit 都能讓您輕鬆實現。 如果您需要建立 AI 產品或將 AI 工具整合到您的軟體應用程式中,您應該考慮 CopilotKit。 您可以在 GitHub 上找到本教學的源程式碼: <https://github.com/TheGreatBonnie/AIPoweredUIComponentsGenerator> --- 原文出處:https://dev.to/tcms/ai-powered-frontend-ui-components-generator-nextjs-gpt4-langchain-copilotkit-1hac

AI 驅動的前端 UI 元件產生器(Next.js、GPT4、Langchain 和 CopilotKit)

**長話短說** -------- 在本文中,您將了解如何建立由 AI 驅動的前端 UI 元件產生器,該產生器使您能夠透過實作教學產生 Next.js Tailwind CSS UI 元件。 我們將介紹如何: - 使用 Next.js、TypeScript 和 Tailwind CSS 建立 UI 元件產生器 Web 應用程式。 - 使用 CopilotKit 將 AI 功能整合到 UI 元件產生器中。 - 整合嵌入式程式碼編輯器以變更產生的程式碼。 先決條件 ---- 要完全理解本教程,您需要對 React 或 Next.js 有基本的了解。 以下是建立 AI 支援的 UI 元件產生器所需的工具: - [Ace 程式碼編輯器](https://ace.c9.io/)- 用 JvaScript 編寫的嵌入式程式碼編輯器,與本機編輯器的功能和效能相符。 - [Langchain](https://www.langchain.com/) - 提供了一個框架,使人工智慧代理能夠搜尋網路並研究任何主題。 - [OpenAI API](https://platform.openai.com/api-keys) - 提供 API 金鑰,讓您能夠使用 ChatGPT 模型執行各種任務。 - [Tavily AI](https://tavily.com/) - 一個搜尋引擎,使人工智慧代理能夠在應用程式中進行研究並存取即時知識。 - [CopilotKit](https://github.com/CopilotKit) - 一個開源副駕駛框架,用於建立自訂 AI 聊天機器人、應用程式內 AI 代理程式和文字區域。 專案設定和套件安裝 --------- 首先,透過在終端機中執行以下程式碼片段來建立 Next.js 應用程式: ``` npx create-next-app@latest aiuigenerator ``` 選擇您首選的配置設定。在本教學中,我們將使用 TypeScript 和 Next.js App Router。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0c2uq47mrd3ppxqvr1v7.png) 接下來,安裝 Ace 程式碼編輯器和 Langchain 軟體套件及其相依性。 ``` npm install react-ace @langchain/langgraph ``` 最後,安裝 CopilotKit 軟體套件。這些套件使我們能夠從 React 狀態檢索資料並將 AI copilot 新增至應用程式。 ``` npm install @copilotkit/react-ui @copilotkit/react-textarea @copilotkit/react-core @copilotkit/backend ``` 恭喜!您現在已準備好建立由人工智慧驅動的部落格。 **建構 UI 元件產生器前端** ----------------- 在本節中,我將引導您完成使用靜態內容建立 UI 元件產生器前端的過程,以定義生成器的使用者介面。 首先,請在程式碼編輯器中前往`/[root]/src/app`並建立一個名為`components`的資料夾。在 Components 資料夾中,建立兩個名為`Header.tsx`和`CodeTutorial.tsx`的檔案。 在`Header.tsx`檔案中,新增以下程式碼,定義一個名為`Header`的功能元件,該元件將呈現生成器的導覽列。 ``` "use client"; import Link from "next/link"; export default function Header() { return ( <> <header className="flex flex-wrap sm:justify-start sm:flex-nowrap z-50 w-full bg-gray-800 border-b border-gray-200 text-sm py-3 sm:py-0 "> <nav className="relative max-w-7xl w-full mx-auto px-4 sm:flex sm:items-center sm:justify-between sm:px-6 lg:px-8" aria-label="Global"> <div className="flex items-center justify-between"> <Link className="w-full flex-none text-xl text-white font-semibold p-6" href="/" aria-label="Brand"> AI-UI-Components-Generator </Link> </div> </nav> </header> </> ); } ``` 在`CodeTutorial.tsx`檔案中,加入以下程式碼,定義一個名為`CodeTutorial`的功能元件,該元件呈現 UI 元件產生器主頁,該首頁將顯示產生的 UI 元件、嵌入式程式碼編輯器和產生的實作教學。 ``` "use client"; import Markdown from "react-markdown"; import { useState } from "react"; import AceEditor from "react-ace"; import React from "react"; export default function CodeTutorial() { const [code, setCode] = useState<string[]>([ `<h1 class="text-red-500">Hello World</h1>`, ]); const [codeToDisplay, setCodeToDisplay] = useState<string>(code[0] || ""); const [codeTutorial, setCodeTutorial] = useState(``); function onChange(newCode: any) { setCodeToDisplay(newCode); } return ( <> <main className=" min-h-screen px-4"> <div className="w-full h-full min-h-[70vh] flex justify-between gap-x-1 "> <div className="w-2/3 min-h-[60vh] rounded-lg bg-white shadow-lg p-2 border mt-8 overflow-auto"> <div className="w-full min-h-[60vh] rounded-lg" dangerouslySetInnerHTML={{ __html: codeToDisplay }} /> </div> <AceEditor placeholder="Placeholder Text" mode="html" theme="monokai" name="blah2" className="w-[50%] min-h-[60vh] p-2 mt-8 rounded-lg" onChange={onChange} fontSize={14} lineHeight={19} showPrintMargin={true} showGutter={true} highlightActiveLine={true} value={codeToDisplay} setOptions={{ enableBasicAutocompletion: true, enableLiveAutocompletion: true, enableSnippets: false, showLineNumbers: true, tabSize: 2, }} /> </div> <div className="w-10/12 mx-auto"> <div className="mt-8"> <h1 className="text-white text-center text-xl font-semibold p-6"> Code Tutorial </h1> {codeTutorial ? ( <Markdown className="text-white">{codeTutorial}</Markdown> ) : ( <div className="text-white"> The Code Tutorial Will Appear Here </div> )} </div> </div> </main> </> ); } ``` 接下來,前往`/[root]/src/page.tsx`文件,新增以下程式碼,導入`CodeTutorial`和`Header`元件,並定義名為`Home`的功能元件。 ``` import React from "react"; import Header from "./components/Header"; import CodeTutorial from "./components/CodeTutorial"; export default function Home() { return ( <> <Header /> <CodeTutorial /> </> ); } ``` 接下來,刪除 globals.css 檔案中的 CSS 程式碼並新增以下 CSS 程式碼。 ``` @tailwind base; @tailwind components; @tailwind utilities; @tailwind base; @tailwind components; @tailwind utilities; body { height: 100vh; background-color: rgb(16, 23, 42); } pre { margin: 1rem; padding: 1rem; border-radius: 10px; background-color: black; overflow: auto; } h2, p { padding-bottom: 1rem; padding-top: 1rem; } code { margin-bottom: 2rem; } ``` 最後,在命令列上執行命令`npm run dev` ,然後導航到 http://localhost:3000/。 現在您應該在瀏覽器上查看 UI 元件產生器前端,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/id9z3bizkb2bghbe4bxb.png) **使用 CopilotKit 將 AI 功能整合到元件產生器** --------------------------------- 在本節中,您將學習如何為 UI 元件產生器新增 AI 副駕駛以產生 UI 元件程式碼以及使用 CopilotKit 的實作教學。 CopilotKit 提供前端和[後端](https://docs.copilotkit.ai/getting-started/quickstart-backend)套件。它們使您能夠插入 React 狀態並使用 AI 代理在後端處理應用程式資料。 首先,我們將 CopilotKit React 元件加入到部落格前端。 ### **將 CopilotKit 新增至部落格前端** 在這裡,我將引導您完成將 UI 元件產生器與 CopilotKit 前端整合的過程,以方便產生 UI 元件程式碼和實作教學。 首先,使用下面的程式碼片段導入`/[root]/src/app/components/CodeTutorial.tsx`檔案頂部的自訂掛鉤`useMakeCopilotReadable`和`useCopilotAction` 。 ``` import { useCopilotAction, useMakeCopilotReadable, } from "@copilotkit/react-core"; ``` 在`CodeTutorial`函數內的狀態變數下方,加入以下程式碼,該程式碼使用`useMakeCopilotReadable`掛鉤來新增將作為應用程式內聊天機器人的上下文產生的程式碼。該鉤子使副駕駛可以讀取程式碼。 ``` useMakeCopilotReadable(codeToDisplay); ``` 在上面的程式碼下方,新增以下程式碼,該程式碼使用`useCopilotAction`掛鉤來設定名為`generateCodeAndImplementationTutorial`的操作,該操作將啟用 UI 元件程式碼和實作教學課程的產生。 這個操作接受兩個參數,稱為`code`和`tutorial` ,這兩個參數可以產生 UI 元件程式碼和實作教程。 該操作包含一個處理函數,該函數根據給定的提示產生 UI 元件程式碼和實作教程。 在處理函數內部, `codeToDisplay`狀態會使用新產生的程式碼進行更新,而`codeTutorial`狀態會使用新產生的教學課程進行更新,如下所示。 ``` useCopilotAction( { name: "generateCodeAndImplementationTutorial", description: "Create Code Snippet with React.js(Next.js), tailwindcss and an implementation tutorial of the code generated.", parameters: [ { name: "code", type: "string", description: "Code to be generated", required: true, }, { name: "tutorial", type: "string", description: "Markdown of step by step guide tutorial on how to use the generated code accompanied with the code. Include introduction, prerequisites and what happens at every step accompanied with code generated earlier. Don't forget to add how to render the code on browser.", required: true, }, ], handler: async ({ code, tutorial }) => { setCode((prev) => [...prev, code]); setCodeToDisplay(code); setCodeTutorial(tutorial); }, }, [codeToDisplay, codeTutorial] ); ``` 之後,請前往`/[root]/src/app/page.tsx`檔案並使用下面的程式碼匯入頂部的 CopilotKit 前端套件和樣式。 ``` import { CopilotKit } from "@copilotkit/react-core"; import { CopilotSidebar } from "@copilotkit/react-ui"; import "@copilotkit/react-ui/styles.css"; ``` 然後使用`CopilotKit`包裝`CopilotSidebar`和`CodeTutorial`元件,如下所示。 `CopilotKit`元件指定 CopilotKit 後端端點 ( `/api/copilotkit/` ) 的 URL,而`CopilotSidebar`呈現應用程式內聊天機器人,您可以提示產生 UI 元件程式碼和實作教學。 ``` export default function Home() { return ( <> <Header /> <CopilotKit url="/api/copilotkit"> <CopilotSidebar instructions="Help the user generate code. Ask the user if to generate its tutorial." defaultOpen={true} labels={{ title: "Code & Tutorial Generator", initial: "Hi! 👋 I can help you generate code and its tutorial.", }}> <CodeTutorial /> </CopilotSidebar> </CopilotKit> </> ); } ``` 之後,執行開發伺服器並導航到 http://localhost:3000。您應該會看到應用程式內聊天機器人已整合到 UI 元件產生器中。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ty4g6tuluhfiqtnnyxvg.png) ### **將 CopilotKit 後端加入博客** 在這裡,我將引導您完成將 UI 元件產生器與 CopilotKit 後端整合的過程,該後端處理來自前端的請求,並提供函數呼叫和各種 LLM 後端(例如 GPT)。 此外,我們將整合一個名為 Tavily 的人工智慧代理,它可以研究網路上的任何主題。 首先,在根目錄中建立一個名為`.env.local`的檔案。然後在保存`ChatGPT`和`Tavily` Search API 金鑰的檔案中加入下面的環境變數。 ``` OPENAI_API_KEY="Your ChatGPT API key" TAVILY_API_KEY="Your Tavily Search API key" ``` 若要取得 ChatGPT API 金鑰,請導覽至 https://platform.openai.com/api-keys。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/mjl2g88iedd1n0qkd3ai.png) 若要取得 Tavilly Search API 金鑰,請導覽至 https://app.tavily.com/home ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/m00kyux6biskw7xn2wec.png) 之後,轉到`/[root]/src/app`並建立一個名為`api`的資料夾。在`api`資料夾中,建立一個名為`copilotkit`的資料夾。 在`copilotkit`資料夾中,建立一個名為`research.ts`的檔案。然後導航到[該 Research.ts gist 文件](https://gist.github.com/TheGreatBonnie/58dc21ebbeeb8cbb08df665db762738c),複製程式碼,並將其新增至**`research.ts`**檔案中 接下來,在`/[root]/src/app/api/copilotkit`資料夾中建立一個名為`route.ts`的檔案。該文件將包含設定後端功能來處理 POST 請求的程式碼。它有條件地包括對給定主題進行研究的“研究”操作。 現在在文件頂部導入以下模組。 ``` import { CopilotBackend, OpenAIAdapter } from "@copilotkit/backend"; // For backend functionality with CopilotKit. import { researchWithLangGraph } from "./research"; // Import a custom function for conducting research. import { AnnotatedFunction } from "@copilotkit/shared"; // For annotating functions with metadata. ``` 在上面的程式碼下面,定義一個執行時間環境變數和一個名為`researchAction`的函數,該函數使用下面的程式碼研究某個主題。 ``` // Define a runtime environment variable, indicating the environment where the code is expected to run. export const runtime = "edge"; // Define an annotated function for research. This object includes metadata and an implementation for the function. const researchAction: AnnotatedFunction<any> = { name: "research", // Function name. description: "Call this function to conduct research on a certain topic. Respect other notes about when to call this function", // Function description. argumentAnnotations: [ // Annotations for arguments that the function accepts. { name: "topic", // Argument name. type: "string", // Argument type. description: "The topic to research. 5 characters or longer.", // Argument description. required: true, // Indicates that the argument is required. }, ], implementation: async (topic) => { // The actual function implementation. console.log("Researching topic: ", topic); // Log the research topic. return await researchWithLangGraph(topic); // Call the research function and return its result. }, }; ``` 然後在上面的程式碼下加入下面的程式碼來定義處理POST請求的非同步函數。 ``` // Define an asynchronous function that handles POST requests. export async function POST(req: Request): Promise<Response> { const actions: AnnotatedFunction<any>[] = []; // Initialize an array to hold actions. // Check if a specific environment variable is set, indicating access to certain functionality. if (process.env.TAVILY_API_KEY) { actions.push(researchAction); // Add the research action to the actions array if the condition is true. } // Instantiate CopilotBackend with the actions defined above. const copilotKit = new CopilotBackend({ actions: actions, }); // Use the CopilotBackend instance to generate a response for the incoming request using an OpenAIAdapter. return copilotKit.response(req, new OpenAIAdapter()); } ``` 如何產生 UI 元件 ---------- 現在轉到您之前整合的應用程式內聊天機器人,並給它一個提示,例如「產生聯絡表單」。 生成完成後,您應該會看到生成的聯絡表單元件及其實作教程,如下所示。您也可以使用嵌入式程式碼編輯器修改產生的程式碼。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/43t9oauptomio4cy1gwr.png) ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/297vxxiqti56ydevfmyl.png) 恭喜!您已完成本教學的專案。 結論 -- [CopilotKit](https://copilotkit.ai/)是一款令人難以置信的工具,可讓您在幾分鐘內將 AI Copilot 加入到您的產品中。無論您是對人工智慧聊天機器人和助理感興趣,還是對複雜任務的自動化感興趣,CopilotKit 都能讓您輕鬆實現。 如果您需要建立 AI 產品或將 AI 工具整合到您的軟體應用程式中,您應該考慮 CopilotKit。 您可以在 GitHub 上找到本教學的源程式碼: <https://github.com/TheGreatBonnie/AIPoweredUIComponentsGenerator> --- 原文出處:https://dev.to/the_greatbonnie/ai-powered-frontend-ui-components-generator-nextjs-gpt4-langchain-copilotkit-1hac

可用於下一個專案的 30 多個強大 AI 庫

今天,我們將介紹 30 個或更多可以使用 AI 建置的專案。 所有專案都是開源的,因此您可以做出貢獻以使其變得更好。 有些專案可能擁有龐大的程式碼庫,但您可以從中獲得靈感並建立一個很酷的副專案。 相信我,如果這個清單沒有讓你感到驚訝,那麼沒有什麼會讓你感到驚訝:) 讓我們開始吧! ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/o4ssxdcxcxmac945sj8x.gif) --- 1. [CopilotKit](https://go.copilotkit.ai/Anmol) - 在數小時內為您的產品提供 AI Copilot。 -------------------------------------------------------------------------- [![副駕駛套件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nzuxjfog2ldam3csrl62.png)](https://github.com/CopilotKit/CopilotKit) 將 AI 功能整合到 React 中是很困難的,這就是 Copilot 的用武之地。一個簡單快速的解決方案,可將可投入生產的 Copilot 整合到任何產品中! 您可以使用兩個 React 元件將關鍵 AI 功能整合到 React 應用程式中。它們還提供內建(完全可自訂)Copilot 原生 UX 元件,例如`<CopilotKit />` 、 `<CopilotPopup />` 、 `<CopilotSidebar />` 、 `<CopilotTextarea />` 。 開始使用以下 npm 指令。 ``` npm i @copilotkit/react-core @copilotkit/react-ui ``` Copilot Portal 是 CopilotKit 提供的元件之一,CopilotKit 是一個應用程式內人工智慧聊天機器人,可查看目前應用狀態並在應用程式內採取操作。它透過插件與應用程式前端和後端以及第三方服務進行通訊。 這就是整合聊天機器人的方法。 `CopilotKit`必須包裝與 CopilotKit 互動的所有元件。建議您也開始使用`CopilotSidebar` (您可以稍後切換到不同的 UI 提供者)。 ``` "use client"; import { CopilotKit } from "@copilotkit/react-core"; import { CopilotSidebar } from "@copilotkit/react-ui"; import "@copilotkit/react-ui/styles.css"; export default function RootLayout({children}) { return ( <CopilotKit url="/path_to_copilotkit_endpoint/see_below"> <CopilotSidebar> {children} </CopilotSidebar> </CopilotKit> ); } ``` 您可以使用此[快速入門指南](https://docs.copilotkit.ai/getting-started/quickstart-backend)設定 Copilot 後端端點。 之後,您可以讓 Copilot 採取行動。您可以閱讀如何提供[外部上下文](https://docs.copilotkit.ai/getting-started/quickstart-chatbot#provide-context)。您可以使用`useMakeCopilotReadable`和`useMakeCopilotDocumentReadable`反應掛鉤來執行此操作。 ``` "use client"; import { useMakeCopilotActionable } from '@copilotkit/react-core'; // Let the copilot take action on behalf of the user. useMakeCopilotActionable( { name: "setEmployeesAsSelected", // no spaces allowed in the function name description: "Set the given employees as 'selected'", argumentAnnotations: [ { name: "employeeIds", type: "array", items: { type: "string" } description: "The IDs of employees to set as selected", required: true } ], implementation: async (employeeIds) => setEmployeesAsSelected(employeeIds), }, [] ); ``` 您可以閱讀[文件](https://docs.copilotkit.ai/getting-started/quickstart-textarea)並查看[演示影片](https://github.com/CopilotKit/CopilotKit?tab=readme-ov-file#demo)。 您可以輕鬆整合 Vercel AI SDK、OpenAI API、Langchain 和其他 LLM 供應商。您可以按照本[指南](https://docs.copilotkit.ai/getting-started/quickstart-chatbot)將聊天機器人整合到您的應用程式中。 基本概念是在幾分鐘內建立可用於基於 LLM 的應用程式的 AI 聊天機器人。 用例是巨大的,作為開發人員,我們絕對應該在下一個專案中嘗試使用 CopilotKit。 CopilotKit 在 GitHub 上擁有超過 5700 顆星,發布了 200 多個版本,這意味著它們不斷改進。 https://go.copilotkit.ai/Anmol Star CopilotKit ⭐️ --- 2. [AgentGPT](https://github.com/reworkd/AgentGPT) - 組裝、配置和部署自主 AI 代理程式。 ------------------------------------------------------------------------ ![代理GPT](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/gnc918anlnbbymwep8xv.png) AgentGPT 可讓您設定和部署自主 AI 代理程式。 它將嘗試透過思考要完成的任務、執行任務並從結果中學習來實現目標:) 它是使用以下方式建構的: - 引導:create-t3-app + FastAPI-模板。 - 框架:Nextjs 13 + Typescript + FastAPI - 驗證:Next-Auth.js - ORM:Prisma 和 SQLModel。 - 資料庫:Planetscale。 - 樣式:TailwindCSS + HeadlessUI。 - 架構驗證:Zod + Pydantic。 - 法學碩士工具:Langchain。 開始使用本[指南](https://github.com/reworkd/AgentGPT?tab=readme-ov-file#getting-started-rocket)在本地安裝它。 您可以查看該應用程式的[演示](https://github.com/reworkd/AgentGPT?tab=readme-ov-file#-demo)並查看[即時網站](https://agentgpt.reworkd.ai/)。 ![示範](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/v17lz12cn58ousqbiiyg.gif) 他們在 GitHub 上擁有 29k+ 顆星,並且正在發布`v1`版本。 https://github.com/reworkd/AgentGPT 明星 AgentGPT ⭐️ --- 3.[私人 GPT](https://github.com/zylon-ai/private-gpt) - 無需網路即可詢問有關您文件的問題。 ------------------------------------------------------------------------ ![私有GPT](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0nshjqmm5xq6kgqkgfdc.png) PrivateGPT 是一個可立即投入生產的 AI 專案,即使在沒有網路連線的情況下,您也可以使用大型語言模型 (LLM) 的功能來詢問有關文件的問題。 100% 私有意味著任何時候都沒有資料離開您的執行環境。 API 分為兩個邏輯區塊: A。高級 API,抽象化了 RAG(檢索增強生成)管道實現的所有複雜性: - 文件攝取:內部管理文件解析、分割、元資料擷取、嵌入產生和儲存。 - 使用所攝取文件中的上下文進行聊天和完成:抽像上下文檢索、提示工程和回應產生。 b.低階 API,允許高階用戶實現複雜的管道: - 嵌入生成:基於一段文字。 - 上下文區塊檢索:給定查詢,從攝取的文件中傳回最相關的文字區塊。 您可以閱讀[安裝指南](https://docs.privategpt.dev/installation/getting-started/installation)來開始。 您可以閱讀[文件](https://docs.privategpt.dev/overview/welcome/introduction)以及所涉及的[詳細架構](https://github.com/zylon-ai/private-gpt?tab=readme-ov-file#-architecture)。 PrivateGPT 現在正在發展成為產生 AI 模型和原語的網關,包括補全、文件攝取、RAG 管道和其他低階建置塊。 他們在 GitHub 上擁有超過 51,000 顆星,並且發展迅速。 https://github.com/zylon-ai/private-gpt 明星私人 GPT ⭐️ --- 4. [Instrukt](https://github.com/blob42/Instrukt) - 終端機中整合人工智慧。 --------------------------------------------------------------- ![指示](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/wsk64pf5yuosui91tmz9.png) Instrukt是一個基於終端的AI整合環境。它提供了一個平台,用戶可以: - 建立並指導模組化人工智慧代理。 - 產生問答的文件索引。 - 建立工具並將其附加到任何代理程式。 用自然語言指導它們,並且為了安全起見,在安全容器(目前使用 Docker 實作)中執行它們,以在其專用的沙盒空間中執行任務。 使用`Langchain` 、 `Textual`和`Chroma`建構。 開始使用以下命令。 ``` pip install instrukt[all] ``` ![指示](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/r3aza7hnlji7hbi2o0js.gif) 有許多令人興奮的功能,例如: - 基於終端的介面,讓強力鍵盤使用者無需離開鍵盤即可指示 AI 代理。 - 對您的資料建立索引並讓代理程式檢索它以進行問答。您可以使用簡單的 UI 建立和組織索引。 - 索引建立將自動偵測程式語言並相應地優化拆分/分塊策略。 - 在安全的 Docker 容器內執行代理程式以確保安全和隱私。 - 整合的 REPL-Prompt 可實現與代理程式的快速交互,以及用於開發和測試的快速回饋循環。 - 您可以使用自訂命令自動執行重複任務。它還具有內建的提示/聊天歷史記錄。 您可以閱讀有關所有[功能的](https://github.com/blob42/Instrukt?tab=readme-ov-file#features)資訊。 您可以閱讀[安裝指南](https://blob42.github.io/Instrukt/install.html)。 您還可以使用內建的 IPython 控制台來除錯和內省代理,這是一個簡潔的小功能。 ![控制台除錯](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qaan8np68e3fk1yueexm.png) Instrukt 已獲得 AGPL 許可證,這意味著任何人都可以將其用於任何目的。 可以肯定地說,Instrukt 是您觸手可及的終端人工智慧指揮官。 這是一個新專案,因此他們在 GitHub 上有大約 200 多顆星,但用例非常好。 https://github.com/blob42/Instrukt 舊指令 ⭐️ --- 5. [Mac 上的語音助理](https://github.com/chidiwilliams/GPT-Automator)- 您的語音控制 Mac 助理。 ------------------------------------------------------------------------------- ![GPT自動機](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rdzv06jnr3z33s7qll5k.png) 您的語音控制 Mac 助理。 GPT Automator 可讓您使用語音在 Mac 上執行任務。例如,打開應用程式、尋找餐廳、綜合資訊。太棒了:D 它是在倫敦黑客馬拉松期間建構的。 它有兩個主要部分: A。語音命令:它使用本地執行的 Whisper(Buzz 的一個分支)來產生命令。 b.命令到行動:您向配備了我們編寫的自訂工具的 LangChain 代理程式發出命令。這些工具包括使用 AppleScript 控制電腦的作業系統以及使用 JavaScript 控制活動瀏覽器。最後,就像任何優秀的人工智慧一樣,我們讓代理商使用 AppleScript 說出最終結果「{Result}」(如果您以前沒有使用過,請嘗試在 Mac 終端機中輸入「Hello World!」)。 我們製作了一個自訂工具,讓法學碩士使用 AppleScript 控制電腦。提示符是文件字串: ``` @tool def computer_applescript_action(apple_script): """ Use this when you want to execute a command on the computer. The command should be in AppleScript. Here are some examples of good AppleScript commands: Command: Create a new page in Notion AppleScript: tell application "Notion" activate delay 0.5 tell application "System Events" to keystroke "n" using {{command down}} end tell ... Write the AppleScript for the Command: Command: """ p = subprocess.Popen(['osascript', '-'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate(applescript.encode('utf-8')) if p.returncode != 0: raise Exception(stderr) decoded_text = stdout.decode("utf-8") return decoded_text ``` 如果您想知道它是如何運作的,GPT Automator 使用 OpenAI 的 Whisper 將您的音訊輸入轉換為文字。然後,它使用LangChain Agent 選擇一組操作,包括使用OpenAI 的GPT-3(“text-davinci-003”)從提示符號產生AppleScript(用於桌面自動化)和JavaScript(用於瀏覽器自動化)命令,然後執行產生的腳本。 請記住,這不適用於生產用途。該專案執行從自然語言產生的程式碼,可能容易受到提示注入和類似的攻擊。這項工作是作為概念驗證而進行的。 您可以閱讀[安裝指南](https://github.com/chidiwilliams/GPT-Automator?tab=readme-ov-file#instructions)。 讓我們看看一些提示及其作用: ✅ 求計算結果。 > 提示:“2 + 2 是什麼?” 它將編寫 AppleScript 開啟計算器並輸入 5 \* 5。 ✅ 尋找附近的餐廳。 > 提示:“查找我附近的餐廳” 它將打開 Chrome,谷歌搜尋附近的餐廳,解析頁面,然後返回最上面的結果。有時它很厚顏無恥,反而會打開谷歌地圖結果並說「最好的餐廳是谷歌地圖頁面頂部的餐廳」。其他時候,它會打開 Google 上的頂部連結 - 並卡在 Google 可存取性頁面上... 以下是執行時列印到終端的內容: ``` Command: Find a great restaurant near Manchester. > Entering new AgentExecutor chain... I need to search for a restaurant near Manchester. Action: chrome_open_url Action Input: https://www.google.com/search?q=restaurant+near+Manchester Observation: Thought: I need to read the page Action: chrome_read_the_page Action Input: Observation: Accessibility links Skip to main content ... # Shortned for brevity Dishoom Manchester 4.7 (3.3K) · £££ · Indian 32 Bridge St · Near John Rylands Library Closes soon ⋅ 11 pm Stylish eatery for modern Indian fare San Carlo 4.2 (2.8K) · £££ · Italian 42 King St W · Near John Rylands Library Closes soon ⋅ 11 pm Posh, sceney Italian restaurant Turtle Bay Manchester Northern Quarter 4.7 Thought: I now know the final answer Final Answer: The 15 best restaurants in Manchester include El Gato Negro, Albert's Schloss, The Refuge, Hawksmoor, On The Hush, Dishoom, Banyan, Zouk Tea Room & Grill, Edison Bar, MyLahore Manchester, Turtle Bay Manchester Northern Quarter, San Carlo, The Black Friar, Mana, and Tast Cuina Catalana. ``` 我不能保證這些餐廳值得,請自行承擔風險。哈哈! ✅ 如果您要求 GPT Automator 擦除您的計算機,它會的。 是的,如果您要求的話,它會擦除您的電腦! 我內心的自我尖叫著要這麼做:) 您可以在這裡查看完整的演示! https://www.loom.com/share/7bfa82c604f3412fbbb04191ce2ae12f 您可以在[Chidi 的部落格](https://chidiwilliams.com/posts/gpt-automator)上閱讀更多內容。 它更像是一個業餘專案,因此他們在 GitHub 上有大約 200 個 star,但它非常酷。 https://github.com/chidiwilliams/GPT-Automator 明星 GPT Automator ⭐️ --- 6. [Flowise](https://github.com/FlowiseAI/Flowise) - 拖放 UI 來建立您的客製化 LLM 流程。 --------------------------------------------------------------------------- ![流塞伊](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/r5bp43nil764fhe4a05z.png) Flowise 是一款開源 UI 視覺化工具,用於建立客製化的 LLM 編排流程和 AI 代理程式。 開始使用以下 npm 指令。 ``` npm install -g flowise npx flowise start OR npx flowise start --FLOWISE_USERNAME=user --FLOWISE_PASSWORD=1234 ``` 這就是整合 API 的方式。 ``` import requests url = "/api/v1/prediction/:id" def query(payload): response = requests.post( url, json = payload ) return response.json() output = query({ question: "hello!" )} ``` ![整合](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ahk2ovjrpq1qk3r5pfot.png) 您可以閱讀[文件](https://docs.flowiseai.com/)。 ![流程化人工智慧](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/trkltpn5lk1y1pte0smd.png) 雲端主機不可用,因此您必須使用這些[說明](https://github.com/FlowiseAI/Flowise?tab=readme-ov-file#-self-host)自行託管。 讓我們探討一些用例: - 假設您有一個網站(可以是商店、電子商務網站或部落格),並且您希望廢棄該網站的所有相關連結,並讓法學碩士回答您網站上的任何問題。您可以按照此[逐步教學](https://docs.flowiseai.com/use-cases/web-scrape-qna)來了解如何實現相同的目標。 ![刮刀](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/e91sz2mga5wvc0x2hp2g.png) - 您還可以建立一個自訂工具,該工具將能夠呼叫 Webhook 端點並將必要的參數傳遞到 Webhook 主體中。請依照本[指南](https://docs.flowiseai.com/use-cases/webhook-tool)使用 Make.com 建立 Webhook 工作流程。 ![網路鉤子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ckyivo9dvue461jc9pv4.png) 還有許多其他用例,例如建立 SQL QnA 或與 API 互動。 FlowiseAI 在 GitHub 上擁有超過 27,500 個 Star,並擁有超過 10,000 個分叉,因此具有良好的整體比率。 https://github.com/FlowiseAI/Flowise 明星 Flowise ⭐️ --- 7. [Twitter Agent](https://github.com/ahmedbesbes/media-agent) - 從社群媒體抓取資料並使用 Langchain 與其聊天。 --------------------------------------------------------------------------------------------- ![推特代理](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/g8umoek3meg2tjxw9jna.png) Media Agent 抓取 Twitter 和 Reddit 提交的內容,對其進行總結,並在互動式終端中與它們聊天。這麼酷的概念! 您可以閱讀[說明](https://github.com/ahmedbesbes/media-agent?tab=readme-ov-file#run-the-app-locally)以在本地安裝它。 它是使用以下方式建構的: - Langchain 🦜 用於建構和撰寫法學碩士。 - ChromaDB 用於儲存向量(也稱為嵌入)並查詢它們以建立對話機器人。 - Tweepy 連接到您的 Twitter API 並提取推文和元資料。 - Praw 連接到 Reddit API。 - Rich 建造了一個很酷的終端 UX/UI。 - 管理依賴關係的詩。 一些很棒的功能: - 代表您從使用者帳戶清單或關鍵字清單中抓取推文/提交內容。 - 使用 OpenAI 嵌入推文/提交內容。 - 建立推文/提交內容的摘要並提供需要回答的潛在問題。 - 在推文之上打開聊天會話。 - 儲存對話及其元資料。 - 豐富的終端使用者介面和日誌記錄功能。 您可以觀看演示! https://www.loom.com/share/f4954e7d34ef4b7b8491e2bf910e8521 它在 GitHub 上有近 100 顆星,並且不再維護。您可以用它來建造更好的東西。 https://github.com/ahmedbesbes/media-agent 明星 Twitter 代理商 ⭐️ --- 8. [GPT 遷移](https://github.com/joshpxyne/gpt-migrate)- 輕鬆將程式碼庫從一種框架或語言遷移到另一種框架或語言。 ---------------------------------------------------------------------------------- ![GPT 遷移](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ullej3qz57t3l4qneyru.png) 如果您曾經面臨將程式碼庫遷移到新框架或語言的痛苦,那麼這個專案適合您。 我想我們都同意我們在某個時候需要這個。您也可以使用工作流程來完成此操作,據我所知,Stripe 曾經將其整個 JS 程式碼庫轉換為 TS。 遷移是一個成本高、乏味且重要的問題。 不要盲目相信當前版本,請負責任地使用它。另請注意,成本可能會迅速增加,因為 GPT-Migrate 旨在編寫(並可能重寫)整個程式碼庫。 您可以使用 Poetry[安裝](https://github.com/joshpxyne/gpt-migrate?tab=readme-ov-file#-installation-using-poetry)它並了解[它的工作原理](https://github.com/joshpxyne/gpt-migrate?tab=readme-ov-file#-how-it-works)。 > 請注意。 GPT-Migrate 目前處於開發 alpha 階段,尚未準備好投入生產使用。例如,在相對簡單的基準測試中,它在約 50% 的時間內順利通過 Python 或 JavaScript 等「簡單」語言,並且在沒有人工幫助的情況下無法通過 C++ 或 Rust 等更複雜的語言。 您可以在這裡觀看演示! ![GPT 遷移](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/megapc2dsnb6qlcl0dy4.gif) 他們在 GitHub 上有 6500+ 顆星,最後一次提交是 6 個月前,所以我認為它不再被維護了! https://github.com/joshpxyne/gpt-migrate 明星 GPT 遷移 ⭐️ --- 9. [Plandex](https://github.com/plandex-ai/plandex) - 用於使用法學碩士建置複雜的真實世界軟體的人工智慧編碼引擎。 ----------------------------------------------------------------------------------- ![普蘭迪克斯](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9c98v9qntshph3wue4fr.png) Plandex 使用長時間執行的代理程式來完成跨多個檔案且需要多個步驟的任務。它將大任務分解為更小的子任務,然後實現每個子任務,一直持續到完成工作為止。 它可以幫助您處理積壓的工作,使用不熟悉的技術,擺脫困境,並花更少的時間在無聊的事情上。 您可以在這裡查看演示! https://vimeo.com/926634577 變更會累積在受保護的沙箱中,以便您可以在自動將它們套用到專案文件之前查看它們。內建版本控制可讓您輕鬆返回並嘗試不同的方法。分支允許您嘗試多種方法並比較結果。 您可以在終端機中有效地管理上下文。輕鬆將檔案或整個目錄新增至上下文中,並在工作時自動更新它們,以便模型始終具有專案的最新狀態。 Plandex 依賴 OpenAI API,並且需要`OPENAI_API_KEY`環境變數。 Plandex 支援 Mac、Linux、FreeBSD 和 Windows。它從沒有依賴關係的單一二進位檔案執行。 您甚至可以嘗試不同的模型和模型設置,然後比較結果。 您可以閱讀[安裝說明](https://github.com/plandex-ai/plandex?tab=readme-ov-file#install)。 Plandex Cloud 是使用 Plandex 最簡單、最可靠的方式。當您使用 plandex new 建立第一個計劃時,系統會提示您開始匿名試用(無需電子郵件)。試用帳戶僅限 10 個計劃,每個計劃有 10 個 AI 模型回复。 Plandex Cloud 帳戶目前是免費的,這是一件好事。 Plandex 在 GitHub 上擁有 8k+ 顆星,並使用 Go 建造。 https://github.com/plandex-ai/plandex 明星PLandex ⭐️ --- 10. [SQL Translator](https://github.com/whoiskatrin/sql-translator) - 使用人工智慧將自然語言查詢轉換為 SQL 程式碼的工具。 -------------------------------------------------------------------------------------------------- ![SQL翻譯器](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9ghpgh4gvpdfiuj2qbat.png) 我試圖建立一個類似的專案,發現它已經存在。 該工具旨在讓任何人都可以輕鬆地將 SQL(結構化查詢語言)命令轉換為自然語言,反之亦然。 SQL 是一種用於管理和操作關聯式資料庫中的資料的程式語言,雖然它是一個強大的工具,但它也可能非常複雜且難以理解。 另一方面,自然語言是我們在日常生活中說和寫的語言,對於不熟悉技術術語的人來說,它通常是首選的溝通方式。 透過 SQL 和自然語言翻譯器,您無需成為 SQL 專家即可了解資料庫中發生的情況或編寫 SQL 查詢。您只需用自然語言輸入查詢即可取得對應的 SQL 程式碼,反之亦然。 其中一些功能是: - 深色模式。 - 小寫/大寫切換。 - 複製到剪貼簿。 - SQL 語法高亮。 - 模式意識(測試版)。 - 查詢歷史記錄。 你可以閱讀 [安裝說明](https://github.com/whoiskatrin/sql-translator?tab=readme-ov-file#%EF%B8%8F-installation),它非常簡單,因為它使用 Nextjs。 此查詢適合您。哈哈! ![酷查詢](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/eef11xrahbmv945xvpm7.png) SQL Translator 在 GitHub 上有 4k star,是使用 TypeScript 建構的。 https://github.com/whoiskatrin/sql-translator 明星 SQL 翻譯機 ⭐️ --- 11. [WingmanAI](https://github.com/e-johnstonn/wingmanAI) - 音訊即時轉錄,與 ChatGPT 整合。 -------------------------------------------------------------------------------- ![僚機人工智慧](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/slrhmt949vr7gqdmgi3h.png) WingmanAI 是一款功能強大的工具,可與系統和麥克風音訊的即時轉錄進行互動。該工具由 ChatGPT 提供支援,可讓您與腳本即時交互,作為機器人的廣泛記憶體基礎,提供獨特的通訊平台。 當您載入指定人員的記錄時,機器人可以回答有關過去對話的問題。 您可以閱讀[安裝說明](https://github.com/e-johnstonn/wingmanAI?tab=readme-ov-file#installation)。 您可以在這裡觀看演示! ![示範](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/w325vc51fys8gebrcb02.gif) 一些簡潔的功能是: - WingmanAI 可以轉錄系統輸出和麥克風輸入音頻,讓您以易於閱讀的格式查看即時轉錄。 - 您可以與 ChatGPT 支援的機器人聊天,該機器人會即時讀取您的文字記錄。 - 機器人以令牌有效的方式維護對話記錄,因為只有當前的文字區塊會傳遞給機器人。 - WingmanAI 讓您可以保存成績單以供將來使用。您可以稍後隨時加載它們,並且對機器人進行的任何查詢都將與保存的轉錄本的向量資料庫交叉引用,從而為機器人提供更豐富的上下文。 - 您可以繼續附加到已儲存的記錄中,隨著時間的推移建立一個龐大的資料庫供機器人從中提取。 它在 GitHub 上有 420 個星,並且不再維護。 https://github.com/e-johnstonn/wingmanAI 明星 WingmanAI ⭐️ --- 12. [Lively](https://github.com/rocksdanister/lively) - 允許使用者設定動畫桌面桌布和螢幕保護程式。 ----------------------------------------------------------------------------- ![活潑](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/60tld1a857herh12r5ci.png) 這只是為了好玩,我們可以使用程式碼學到很多關於它是如何完成的。 你可以看看這個[影片](https://www.pexels.com/video/blue-texture-abstract-leaves-7710243/),看看它看起來有多瘋狂。 ![風俗](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kb2ll571uc2jd2xrpmph.png) 他們提供[三種類型的壁紙,](https://github.com/rocksdanister/lively?tab=readme-ov-file#types-of-wallpapers)包括影片/GIF、網頁和應用程式/遊戲。 它基於 C# 和 live 支援的一些很酷的功能建置: 1. Lively 可以透過終端機的[命令列參數](https://github.com/rocksdanister/lively/wiki/Command-Line-Controls)進行控制。您可以將其與其他語言(例如 Python 或腳本軟體 AutoHotKey)整合。 2. 一組強大的[API](https://github.com/rocksdanister/lively/wiki/API) ,供開發人員建立互動式壁紙。取得硬體讀數、音訊圖表、音樂資訊等。 3. 當電腦上執行全螢幕應用程式/遊戲時(~0% CPU、GPU 使用率),桌布播放會暫停。 4. 您還可以利用[機器學習推理](https://github.com/rocksdanister/lively/wiki/Machine-Learning)來建立動態壁紙。您可以預測任何 2D 影像與相機的距離並產生類似 3D 的視差效果。酷:D 我見過很多人使用它,其中許多人甚至不知道它是開源的。 您可以使用[安裝程式](https://github.com/rocksdanister/lively/releases/download/v2.0.7.4/lively_setup_x86_full_v2074.exe)或透過[Microsoft Store](https://www.microsoft.com/store/productId/9NTM2QC6QWS7?ocid=pdpshare)下載它。 它是 2023 年 Microsoft Store 的獲勝者。 它在 GitHub 上擁有 13k+ Stars,有 60 個版本。 https://github.com/rocksdanister/lively 明星活潑 ⭐️ --- 13. [RestGPT](https://github.com/Yifan-Song793/RestGPT) - 基於 LM 的自主代理透過 RESTful API 控制應用程式。 ------------------------------------------------------------------------------------------- ![休息GPT](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/lyp7goco6awn2l4uttww.png) 這項工作旨在建立一個基於大型語言模型的自主代理 RestGPT,以控制現實世界的應用程式,例如電影資料庫和音樂播放器。為了實現這一目標,我們將法學碩士與 RESTful API 連接起來,並解決規劃、API 呼叫和回應解析的實際挑戰。為了全面評估 RestGPT 的效能,我們提出了 RestBench,這是一個高品質的基準測試,由兩個真實場景和具有黃金解決方案路徑的人工註釋指示組成。 RestGPT採用迭代式從粗到精的線上規劃框架,並使用執行器呼叫RESTful API。以下是 RestGPT 的概述。 ![在職的](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/17p05syighh3llbmr1fk.png) 您可以閱讀[文件](https://github.com/Yifan-Song793/RestGPT?tab=readme-ov-file#data)以使用 RestBench 評估 RestGPT 的效能。 使用 TMDB 電影資料庫搜尋 Sofia Coppola 執導的電影數量的範例。 ![例子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/toh8k55yhb7c6t4oq0j7.gif) 您可以閱讀康乃爾大學發表的程式碼研究論文: [RestGPT - Connecting Large Language Models with Real-World RESTful APIs](https://arxiv.org/abs/2306.06624) 。 他們在 GitHub 上有 1.2k Stars,雖然不是很大,但涵蓋了一個很好的用例。 https://github.com/Yifan-Song793/RestGPT 明星 RestGPT ⭐️ --- 14. [ChatFiles](https://github.com/guangzhengli/ChatFiles) - 上傳您的檔案並與其對話。 ------------------------------------------------------------------------- ![聊天文件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/lhimajsma8ijyzeknmlg.png) 文件聊天機器人 — 多個文件,由 GPT / Embedding 提供支援。你可以上傳任何文件並與之對話,考慮到他們使用了另一個著名的開源專案,UI 非常好。 它在底層使用 Langchain 和[Chatbot-ui](https://github.com/mckaywrigley/chatbot-ui) 。使用 Nextjs、TypeScript、Tailwind 和 Supabase(向量 DB)建構。 如果您想了解該方法和技術架構,那麼就在這裡! ![建築學](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/8zbn7h50k6gwxgz6rkaf.png) 此環境僅用於試用,支援最大檔案大小為 10 MB,這是一個缺點,如果您想要更大的大小,則可以[在本機安裝](https://github.com/guangzhengli/ChatFiles?tab=readme-ov-file#how-to-run-locally)。 他們提供了您可以使用的[入門問題](https://github.com/guangzhengli/ChatFiles/blob/main/doc/Example.md)。您可以查看[現場演示](https://chatfile.vectorhub.org/)。 他們在 GitHub 上有 3k star,並且發布了`v0.3`版本。 https://github.com/guangzhengli/ChatFiles 明星 ChatFiles ⭐️ --- 15. [MindsDB](https://github.com/mindsdb/mindsdb) - 從企業資料客製化人工智慧的平台。 -------------------------------------------------------------------- ![思維資料庫](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/i9q3jdswxdx6wqfk0vqw.png) MindsDB 是一個利用企業資料客製化人工智慧的平台。 透過 MindsDB,您可以利用資料庫、向量儲存或應用程式中的資料即時部署、服務和微調模型,以建立人工智慧驅動的應用程式 - 使用開發人員已知的通用工具。 借助 MindsDB 及其與資料來源和 AI/ML 框架的近[200 個集成](https://docs.mindsdb.com/integrations/data-overview),任何開發人員都可以使用其企業資料更快、更安全地自訂符合其目的的 AI。 ![MindsDB 的工作原理](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4q1gfmhq43gopdix03gr.png) 您可以閱讀[文件](https://docs.mindsdb.com/)和[快速入門指南](https://docs.mindsdb.com/quickstart-tutorial)來開始使用。 目前,他們總共支援[3 個使用 Mongo-QL、Python 和 JavaScript 的 SDK](https://docs.mindsdb.com/sdks/overview) 。 MindsDB 有多種應用程式,例如與眾多資料來源和 AI 框架集成,因此您可以輕鬆地將資料和 AI 結合在一起以建立和自動化自訂工作流程。 其他常見用例包括微調模型、聊天機器人、警報系統、內容生成、自然語言處理、分類、回歸和預測。閱讀有關[用例的](https://docs.mindsdb.com/use-cases/)更多訊息,每個用例都有一個包含一些資訊的架構圖。 ![用例](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/wuhxzbioqh9a5s9f0w7s.png) 例如,MindsDB 的聊天機器人架構圖。您可以閱讀提供的所有[解決方案](https://github.com/mindsdb/mindsdb?tab=readme-ov-file#-get-started)及其 SQL 查詢範例。 ``` // SQL Query Example for Chatbot CREATE CHATBOT slack_bot USING database='slack',agent='customer_support'; ``` ![聊天機器人](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/otoqsro02ghqb709yglk.png) 只是為了告訴您總體的可能性,您可以查看[如何使用 AI + IoT 感測器資料預測氣溫](https://mindsdb.com/blog/how-to-forecast-air-temperatures-with-ai-iot-sensor-data)。令人興奮的權利:) ![心靈資料庫](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/82wrjyrkch44taeurv1r.png) 他們在 GitHub 上擁有超過 21k 個 star,並且在`v24.4.3.0`上有超過 200 個版本。順便說一句,這是我第一次在任何版本中看到 4 個部分,因為我一直遵循語義版本。 https://github.com/mindsdb/mindsdb 明星 MindsDB ⭐️ --- 16. [Quivr](https://github.com/QuivrHQ/quivr) - 你的 GenAI 第二腦。 ------------------------------------------------------------- ![奎弗爾](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/hl12fl88mdjmfkfath1t.png) Quivr,您的第二個大腦,利用 GenerativeAI 的力量成為您的私人助理!可以將其視為黑曜石,但增強了人工智慧功能。 ![統計資料](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5a27c2ubbmri0b2xlh1l.png) 您可以閱讀[安裝指南](https://github.com/QuivrHQ/quivr?tab=readme-ov-file#getting-started-)。 您可以閱讀[文件](https://docs.quivr.app/home/intro)並觀看[示範影片](https://github.com/QuivrHQ/quivr?tab=readme-ov-file#demo-highlights-)。 他們可以提供更好的免費套餐,但這足以在您端進行測試。 它在 GitHub 上擁有超過 30k 顆星,發布了 220 多個版本,這意味著它們正在不斷改進。 https://github.com/QuivrHQ/quivr 明星 Quivr ⭐️ --- 17.[動畫繪畫](https://github.com/facebookresearch/AnimatedDrawings)- 一種將兒童人物繪畫動畫化的方法。 --------------------------------------------------------------------------------- ![動畫圖畫](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9pvpj68sum9xrqfz0s6n.gif) 我的意思是哇!這麼酷的概念。我不知道你怎麼想,但我真的很興奮。 這是 Facebook 的一個開源專案,主要用於研究目的,包含論文《 [A Method for Animating Children's Drawings of the Human Figure》](https://dl.acm.org/doi/10.1145/3592788)中描述的演算法的實作。 該專案已在 macOS Ventura 13.2.1 和 Ubuntu 18.04 上進行了測試。如果您在其他作業系統上安裝,則可能會遇到問題。 他們強烈建議在安裝 Animated Drawings 之前啟動 Python 虛擬環境。 閱讀有關[安裝說明](https://github.com/facebookresearch/AnimatedDrawings?tab=readme-ov-file#installation)以及如何快速入門的更多資訊。 您可以按照這個完整的指南來為[您的繪圖製作動畫](https://github.com/facebookresearch/AnimatedDrawings?tab=readme-ov-file#animating-your-own-drawing),包括如何在場景中加入多個角色、加入背景圖像以及更多令人興奮的事情。 他們在 GitHub 上擁有超過 10k 顆星,並且僅用於具有 MIT 許可的研究目的。 https://github.com/facebookresearch/AnimatedDrawings 明星動畫繪圖 ⭐️ --- 18.[背景移除器](https://github.com/nadermx/backgroundremover)- 讓您可以透過簡單的 CLI 使用 AI 從影像和影片中移除背景。 ------------------------------------------------------------------------------------------ ![背景去除劑](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/v8bppslk45ci383wpman.png) 這是一個使用 AI 從圖像和影片中刪除背景的命令列工具。 首先從 pypi 安裝 backgroundremover。 ``` pip install --upgrade pip pip install backgroundremover ``` 也可以在不透過 pip 安裝的情況下執行它,只需克隆 git 以在本地啟動虛擬環境安裝要求並執行。 您可以使用的一些命令: - 從本機檔案圖像中刪除背景 ``` backgroundremover -i "/path/to/image.jpeg" -o "output.png" ``` - 從本地影片中刪除背景並將其覆蓋在圖像上 ``` backgroundremover -i "/path/to/video.mp4" -toi "/path/to/videtobeoverlayed.mp4" -o "output.mov" ``` 您可以檢查可透過 CLI 使用的所有[命令](https://github.com/nadermx/backgroundremover?tab=readme-ov-file#usage-as-a-cli)。 您甚至可以將它用作圖書館。 ``` from backgroundremover.bg import remove def remove_bg(src_img_path, out_img_path): model_choices = ["u2net", "u2net_human_seg", "u2netp"] f = open(src_img_path, "rb") data = f.read() img = remove(data, model_name=model_choices[0], alpha_matting=True, alpha_matting_foreground_threshold=240, alpha_matting_background_threshold=10, alpha_matting_erode_structure_size=10, alpha_matting_base_size=1000) f.close() f = open(out_img_path, "wb") f.write(img) f.close() ``` 您可以閱讀[安裝說明](https://github.com/nadermx/backgroundremover?tab=readme-ov-file#installation)並觀看[現場演示](https://www.backgroundremoverai.com/)。 > 輸入與輸出。 ![輸入影像](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/b0rwjaxxw460lugle5z2.png) 他們在 GitHub 上有 6k star,我們絕對可以用它來學習一些重要的概念。 https://github.com/nadermx/backgroundremover 明星背景去除器 ⭐️ --- 19. [Lobe Chat](https://github.com/lobehub/lobe-chat) - 現代設計的法學碩士/人工智慧聊天框架。 --------------------------------------------------------------------------- ![波瓣聊天](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ddxibf7xxx931tdoj1mn.png) 一個開源、現代設計的 ChatGPT/LLM UI/框架。 支援語音合成、多模式和可擴展(函數呼叫)插件系統。您可以一鍵部署您的私有 OpenAI。 ![旅行](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/39se198xal53r854sdps.png) 讓我們來看看 LobeChat 的一些令人興奮的功能: ✅ 多模式服務提供者支援。 ![多服務](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nodazgxel962wrp2hnvo.png) 他們將我們的支援擴展到多個模型服務提供者,而不是局限於單一服務提供者,為用戶提供更多樣化和豐富的對話選擇。 尋找他們支援的[10 多個模型服務提供者](https://lobehub.com/docs/usage/features/multi-ai-providers)的完整清單。 ✅ 市場助理。 ![助理市場](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/35z3kz2jr4mnxid9dwsg.png) 在LobeChat的[助手市場](https://lobehub.com/assistants)中,創作者可以發現一個充滿活力和創新的社區,匯集了許多精心設計的助手。這些助手不僅在工作場景中發揮著至關重要的作用,而且在學習過程中也提供了極大的便利。在這裡,每個人都可以貢獻自己的智慧,分享自己開發的助手。 ![市場](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ex23f2epblfp2cxtxbnl.png) 那裡有很多很棒的應用程式。哇! ✅ 模型視覺辨識。 ![模型視覺辨識](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/fuxz350091223cj36dq7.png) LobeChat現在支援OpenAI的gpt-4-vision、Google Gemini Pro Vision、Zhipu GLM-4 Vision等具有視覺辨識能力的大型語言模型,使LobeChat具備多模態互動能力。用戶可以輕鬆地將圖片上傳或拖放到聊天框中,助理將能夠辨識圖片內容並據此進行智慧對話,打造更聰明、更多樣化的聊天場景。 ✅ 文字到圖像生成。 ![文字到圖像生成](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/z2q6qzcy8anjgsg2381o.png) LobeChat 支援最新的文字到圖像生成技術,現在允許使用者在與助手對話時直接使用文字到圖像工具。透過利用 DALL-E 3、MidJourney 和 Pollinations 等 AI 工具的功能,助手現在可以將您的想法轉化為圖像。 ✅ 本地大語言模型 (LLM) 支援。 ![本地大語言模型 (LLM) 支援。](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ucn4rpa4p2vb11hhvkn1.png) 借助 Ollama AI 強大的基礎設施和社區的協作努力,現在您可以在 LobeChat 中與本地 LLM(大型語言模型)進行對話! 透過執行以下 Docker 指令,您可以在 LobeChat 中體驗與本機 LLM 的對話。 ``` docker run -d -p 3210:3210 -e OLLAMA_PROXY_URL=http://host.docker.internal:11434/v1 lobehub/lobe-chat ``` ✅ 漸進式網頁應用程式 (PWA)。 ![漸進式網頁應用程式 (PWA)](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/sccmha74iz01rr12gphr.png) 他們採用了漸進式 Web 應用程式 PWA 技術,這是一種現代 Web 技術,可將 Web 應用程式提升到接近本機應用程式的體驗。透過 PWA,LobeChat 可以在桌面和行動裝置上提供高度優化的使用者體驗,同時保持輕量級和高效能的功能。 ✅ 自訂主題。 ![自訂主題](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7cl73pplbor4z1381kdm.png) LobeChat在介面設計上非常注重個人化的使用者體驗,因此引入了靈活多樣的主題模式,包括白天的淺色模式和夜間的深色模式。 除了主題模式切換之外,我們還提供了一系列顏色自訂選項,讓使用者可以根據自己的喜好調整應用程式的主題顏色。 了解所有[功能和用例](https://lobehub.com/docs/usage/start)。 您可以自行託管或使用 docker 部署它。 lobe chat 的[生態系統](https://github.com/lobehub/lobe-chat/tree/main?tab=readme-ov-file#-ecosystem)提供了 4 個軟體包: `lobehub/ui` 、 `lobehub/icons` 、 `lobehub/tts`和`lobehub/lint` 。 他們還提供[插件市場](https://lobehub.com/plugins),您可以在其中找到許多有用的插件,這些插件可用於引入新的函數呼叫,甚至是呈現訊息結果的新方法。如果你想開發自己的插件,請參考 wiki 中的[📘插件開髮指南](https://lobehub.com/docs/usage/plugins/development)。 ![插件市場](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/uqtxt31vc42uwnw2ukgr.png) 您可以閱讀[文件](https://lobehub.com/docs/usage/start)。 您可以查看[現場演示](https://chat-preview.lobehub.com/chat)。它太酷了! ![演示快照](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/xe3ngshtwpps2kmpu98f.png) 他們在 GitHub 上擁有超過 28k 顆星,發布了 500 多個版本。 https://github.com/lobehub/lobe-chat 星瓣聊天 ⭐️ --- 20.[微代理](https://github.com/aymenfurter/microagents)- 能夠自我編輯提示的代理。 ------------------------------------------------------------------ ![微代理](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nuxv03dgb03s04dkmkm9.png) 它是一個實驗框架,用於動態建立自我改進的代理來回應任務。 微代理代表了一種建立自我改進代理的新方法。小型的微服務大小(因此稱為微代理)代理是根據用戶分配給助手的任務動態生成的,評估其功能,並在成功驗證後存儲以供將來重用。 這使得跨聊天會話的學習成為可能,使系統能夠獨立推斷任務執行的方法。 這是使用`Python` 、 `OpenAI's GPT-4 Turbo`和`Text-Embedding-Ada-002`建構的。 您可以閱讀[安裝說明](https://github.com/aymenfurter/microagents?tab=readme-ov-file#installation)。他們提到您應該擁有一個可以存取 gpt-4-turbo 和 text-embedding-ada-002 的 OpenAI 帳戶。 讓我們看一個獲取天氣預報代理的範例。 ``` You are an adept weather informant. Fetch the weather forecast by accessing public API data using this Python code snippet: ``python import requests import json def fetch_weather_forecast(location, date): response = requests.get(f"https://api.met.no/weatherapi/locationforecast/2.0/compact?lat={location[0]}&lon={location[1]}") weather_data = response.json() for day_data in weather_data['properties']['timeseries']: if date in day_data['time']: print(day_data['data']['instant']['details']) break `` # Example usage: fetch_weather_forecast((47.3769, 8.5417), '2024-01-22T12:00:00Z') Note: Replace the (47.3769, 8.5417) with the actual latitude and longitude of the location and the date string accordingly. ``` 如果您想知道如何建立代理,那麼此架構圖將對此進行解釋。 ![圖表](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7oi4fbt6e5qauqo293qt.png) 您可以看到[工作演示](https://github.com/aymenfurter/microagents?tab=readme-ov-file#demo)。 他們在 GitHub 上有大約 700 顆星,值得一看。 https://github.com/aymenfurter/microagents 明星微代理 ⭐️ --- 21. [GPT-4 & LangChain](https://github.com/mayooear/gpt4-pdf-chatbot-langchain) - 用於大型 PDF 文件的 GPT4 和 LangChain 聊天機器人。 -------------------------------------------------------------------------------------------------------------------------- ![聊天架構](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0pe0xehimhyw2mfubzu9.png) 這可用於新的 GPT-4 API 來為多個大型 PDF 檔案建立 chatGPT 聊天機器人。 該系統是使用 LangChain、Pinecone、Typescript、OpenAI 和 Next.js 建構的。 LangChain 是一個簡化可擴展 AI/LLM 應用程式和聊天機器人開發的框架。 Pinecone 用作向量存儲,用於以文字格式儲存嵌入和 PDF,以便以後檢索類似文件。 您可以閱讀涉及複製、安裝依賴項和設定環境 API 金鑰的[開發指南](https://github.com/mayooear/gpt4-pdf-chatbot-langchain?tab=readme-ov-file#development)。 您可以觀看[YouTube 影片](https://www.youtube.com/watch?v=ih9PBGVVOO4),了解如何遵循和使用它。 他們在 GitHub 上擁有 14k+ Stars,僅提交了 34 次。在您的下一個人工智慧應用程式中嘗試! https://github.com/mayooear/gpt4-pdf-chatbot-langchain 明星 GPT-4 和 Langchain ⭐️ --- 22. [Buzz](https://github.com/chidiwilliams/buzz) - 在您的個人電腦上離線轉錄和翻譯音訊。 ---------------------------------------------------------------------- ![嗡嗡聲](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qdi1olu9ogarzxdc3ct9.png) 使用 OpenAI 的 Whisper 的強大功能在您的個人電腦上離線轉錄和翻譯音訊。 Buzz 甚至出現在[App Store](https://apps.apple.com/us/app/buzz-captions/id6446018936?mt=12&itsct=apps_box_badge&itscg=30200) 。取得 Buzz 的 Mac 原生版本,具有更簡潔的外觀、音訊播放、拖放匯入、文字記錄編輯、搜尋等功能。 您可以閱讀[安裝說明](https://chidiwilliams.github.io/buzz/docs/installation)。 令人興奮的功能: - 匯入音訊和視訊檔案並將文字記錄匯出為 TXT、SRT 和 VTT(演示)。 - 從電腦麥克風轉錄和翻譯為文字(資源密集且可能不是即時的。 - 它可在 Mac、Windows 和 Linux 上使用。 - 還有一個[CLI](https://chidiwilliams.github.io/buzz/docs/cli)選項。 在這裡查看演示! https://www.loom.com/share/564b753eb4d44b55b985b8abd26b55f7 您可以閱讀[文件](https://chidiwilliams.github.io/buzz/docs)。 它們在 GitHub 上擁有近 10k star,並且自兩週前上次提交以來仍在維護中。 https://github.com/chidiwilliams/buzz 明星嗡嗡聲 ⭐️ --- 23. [Deepgram](https://github.com/deepgram) - 將語音 AI 建置到您的應用程式中。 ---------------------------------------------------------------- ![深度圖](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/32enxrtcwqk6g81eazay.png) 從新創公司到 NASA,Deepgram API 每天都用於轉錄和理解數百萬分鐘的音訊。快速、準確、可擴展且經濟高效。 它為開發人員提供語音到文字和音訊智慧模型。 ![深度圖選項](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rdc3tqg7fvt3sw6ktle7.png) 儘管他們有免費增值模式,但免費套餐的限制足以讓您入門。 可視化效果更上一層樓。您可以檢查即時串流媒體回應或音訊檔案並比較音訊的智慧程度。 ![串流媒體](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4wcvzzrqzn94gxe594hf.png) ![情緒分析](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/uw6wkhzg7g6vgq7lphri.png) 您可以閱讀[文件](https://developers.deepgram.com/docs/introduction)。 您也可以閱讀 Deepgram 撰寫的關於[如何將語音辨識新增至您的 React 和 Node.js 專案的範例部落格](https://deepgram.com/learn/how-to-add-speech-recognition-to-your-react-project)。 如果您想嘗試 API 來親自了解模型的靈活性,請查看他們的[API Playground](https://playground.deepgram.com/?smart_format=true&language=en&model=nova-2) 。 https://github.com/deepgram 明星 Deepgram ⭐️ --- 24. [OpenDevin](https://github.com/OpenDevin/OpenDevin) - 更少的程式碼,更多的內容。 ----------------------------------------------------------------------- ![奧彭文](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4on63bb02g4x4ny8gtcn.png) ![奧彭文](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/l0yepod2rye2jk5r12dt.png) 這是一個開源專案,旨在複製 Devin,一名自主人工智慧軟體工程師,能夠執行複雜的工程任務並在軟體開發專案上與用戶積極協作。該計畫致力於透過開源社群的力量複製、增強和創新 Devin。 只是想讓你知道,這是在德文被介紹之前。 您可以閱讀帶有要求的[安裝說明](https://github.com/OpenDevin/OpenDevin?tab=readme-ov-file#installation)。 他們使用 LiteLLM,因此您可以使用任何基礎模型來執行 OpenDevin,包括 OpenAI、Claude 和 Gemini。 如果您想為 OpenDevin 做出貢獻,您可以查看 [演示](https://github.com/OpenDevin/OpenDevin/blob/main/README.md#opendevin-code-less-make-more)和[貢獻指南](https://github.com/OpenDevin/OpenDevin/blob/main/CONTRIBUTING.md)。 它在 GitHub 上擁有超過 10,700 個 Star,並且正在快速成長。 https://github.com/OpenDevin/OpenDevin 明星 OpenDevin ⭐️ --- 25. [NPM Copilot](https://github.com/whoiskatrin/npm-copilot) - Next.js 的 CLI 工具,可以即時分析日誌。 ------------------------------------------------------------------------------------------ ![npm 副駕駛](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7omx4d2yzub3gx1xmkvh.png) npm/yarn/pnpm copilot 是一個命令列工具,它使用 OpenAI 的 GPT-3 語言模型來提供修復程式碼中錯誤的建議。 CLI 工具可偵測目前目錄中正在使用的專案類型和套件管理器。 然後,它執行適當的開發伺服器命令(例如,npm run dev、yarn run dev、pnpm run dev)並偵聽正在執行的應用程式產生的日誌。 當遇到錯誤時,CLI 工具會即時提供錯誤修復建議。 首先使用以下 npm 指令安裝 npm-copilot 套件。 ``` npm install -g npm-copilot ``` CLI 工具將開始監視 Next.js 應用程式產生的日誌,並即時提供錯誤修復建議。 您可以透過該命令在專案中使用它。 ``` npm-copilot ``` 他們在 GitHub 上有 338 顆星,支援`Next,js` 、 `React` 、 `Angular`和`Vue.js` https://github.com/whoiskatrin/npm-copilot 明星 NPM Copilot ⭐️ --- 26. [Mentat](https://github.com/AbanteAI/mentat) - 人工智慧編碼助理。 ------------------------------------------------------------ ![撒謊了](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/yeba0cbns0fve53k5xk5.png) Mentat 是一款人工智慧工具,可直接從命令列幫助您完成任何編碼任務。 與 Copilot 不同,Mentat 協調多個位置和文件的編輯。與 ChatGPT 不同的是,Mentat 已經擁有您專案的上下文 - 無需複製和貼上! 您可以觀看此演示以了解基本概述。 https://www.youtube.com/watch?v=lODjaWclwpY 如果需要協助,您可以閱讀[安裝說明](https://github.com/AbanteAI/mentat?tab=readme-ov-file#install)或觀看安裝[教學](https://www.youtube.com/watch?v=bVJP8hY8uRM)。 您可以閱讀[文件](https://github.com/AbanteAI/mentat?tab=readme-ov-file#-usage)。 他們在 GitHub 上有 2.3k 顆星,並且正在發布`v1`版本。 https://github.com/AbanteAI/mentat Star Mentat ⭐️ --- 27. [FlowGPT](https://github.com/nilooy/flowgpt) - 使用 AI 產生流程圖。 --------------------------------------------------------------- ![流量GPT](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qzzpnc7doy4o6qizosjl.png) FlowGPT是一個用ai(gpt-3.5)產生流程圖的工具。 它是使用 Next.js、Langchain、Mermaid 和 DaisyUI 建構的。 您可以閱讀[安裝說明](https://github.com/nilooy/flowgpt?tab=readme-ov-file#installation)。 你可以查看[gif 示範](https://github.com/nilooy/flowgpt?tab=readme-ov-file#flowgpt-is-a-tool-to-generate-flowchart-with-ai-gpt-35)。 它只有 11 次提交,但在 GitHub 上有 238 顆星,並且是使用 TypeScript 建置的。作為一個小專案值得一試。 https://github.com/nilooy/flowgpt Star FlowGPT ⭐️ --- 28. [reor](https://github.com/reorproject/reor) - 自組織人工智慧筆記應用程式。 ---------------------------------------------------------------- ![我認為](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/c0x2q2a67bg7gzdekizw.png) 迄今為止我見過的最令人興奮的專案之一,特別是因為它在本地執行模型。 Reor 是一款基於人工智慧的桌面筆記應用程式:它會自動連結相關筆記、回答筆記上的問題並提供語義搜尋。 所有內容都儲存在本地,您可以使用類似黑曜石的 Markdown 編輯器來編輯筆記。該專案假設人工智慧思維工具預設應該在本地執行模型。 Reor 站在 Ollama、Transformers.js 和 LanceDB 等巨頭的肩膀上,使 LLM 和嵌入模型都可以在本地執行。也支援連接到 OpenAI 或 OpenAI 相容 API(例如 Oobabooga)。 > 我知道你想知道它怎麼可能是`self-organizing` ? A。您寫的每個筆記都會被分塊並嵌入到內部向量資料庫中。 b.相關筆記透過向量相似度自動連接。 C。 LLM 支援的問答對筆記語料庫進行 RAG。 d.一切都可以進行語義搜尋。 您可以在這裡觀看演示! ![示範](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/k1whpg9m7ubt5xluyf7f.gif) 將 Reor 視為一個帶有兩個生成器的 RAG 應用程式:LLM 和人類。在問答模式下,法學碩士會從語料庫中取得檢索到的上下文來幫助回答查詢。 類似地,在編輯器模式下,人們可以切換側邊欄以顯示從語料庫「檢索」的相關註釋。這是透過將當前筆記中的想法與語料庫中的相關想法交叉引用來「增強」您的想法的一種非常有效的方法。 您可以閱讀[文件](https://www.reorproject.org/docs)並從網站[下載](https://www.reorproject.org/)。 Mac、Linux 和 Windows 皆支援。 他們還提供了入門指南,以便幫助您入門。 ![入門指南](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/bx3w7nalcwc9egumu0hm.png) 它們在 GitHub 上有 4.2k 顆星,並使用 TypeScript 建置。 https://github.com/reorproject/reor 星標 reor ⭐️ --- 29. [Amica](https://github.com/semperai/amica) - 讓您在瀏覽器中輕鬆地與 3D 角色聊天。 --------------------------------------------------------------------- ![朋友](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/2nvizcn717h3cteocft5.png) Amica 是一個開源接口,用於透過語音合成和語音辨識與 3D 角色進行互動式通訊。 您可以匯入 VRM 文件,調整聲音以適合角色,並產生包含情緒表達的回應文字。 他們使用 Three.js、OpenAI、Whisper、Bakllava 等進行視覺處理。您可以閱讀[Amica 的工作原理](https://docs.heyamica.com/overview/how-amica-works)及其所涉及的[核心概念](https://docs.heyamica.com/overview/core-concepts)。 您可以克隆該存儲庫並使用它來[開始](https://docs.heyamica.com/getting-started/installation)。 ``` npm i npm run dev ``` 您可以閱讀[文件](https://docs.heyamica.com/)並查看[演示](https://amica.arbius.ai/),這真是太棒了:D ![示範](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/92iv9y2auly6tvenee82.png) 您可以觀看這段簡短的影片,了解它的功能。 https://www.youtube.com/watch?v=hUxAEnFiXH8 Amica 使用 Tauri 建立桌面應用程式。 他們在 GitHub 上有 400+ Stars,而且看起來非常容易使用。 https://github.com/semperai/amica Star Amica ⭐️ --- 30.[繼續](https://github.com/continuedev/continue)- 使您能夠建立人工智慧軟體開發系統。 ------------------------------------------------------------------- ![繼續](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7ro5ctus5tdfvqdnysby.png) 繼續讓開發人員保持流動。我們的開源 VS Code 和 JetBrains 擴充功能可讓您輕鬆建立自己的模組化 AI 軟體開發系統並進行改進。 它們有很多很棒的功能,讓我們看看其中的一些: > 輕鬆理解程式碼部分。 ![程式碼部分](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/lh8k3s0uv5y1assa50dl.gif) > 選項卡可自動完成程式碼建議。 ![自動完成](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/09xt6urla4jic5x3m5rr.gif) > 詢問有關您的程式碼庫的問題。 ![問題](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qd95frn0j9cd417yighz.gif) > 快速使用文件作為上下文。 ![文件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/y2moxr84w6fwuwqvsccn.gif) > 立即了解終端錯誤。 ![錯誤](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kaaq6x5978tm1u61moxb.gif) > 使用斜槓指令開始操作。 ![命令](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/j4vlzc2vuiuoivgqy5e7.png) > 重構您正在編碼的函數。 ![重構](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7wz1tzon8afivi79ulvn.png) 了解所有[功能](https://docs.continue.dev/how-to-use-continue)。 您必須從市場安裝[VSCode 擴展](https://marketplace.visualstudio.com/items?itemName=Continue.continue),然後閱讀[快速入門指南](https://docs.continue.dev/quickstart)。 您可以閱讀[文件](https://docs.continue.dev/intro)。 它們在 GitHub 上擁有超過 10k 顆星,並使用 TypeScript 建置。 https://github.com/continuedev/continue 星繼續 ⭐️ --- 我從來沒有如此詳細地介紹過這麼多專案! 我希望這能幫助您創造一些鼓舞人心的東西。 請分享更多專案或任何您想要其他人可以學習的內容! 請關注 Copilotkit 以獲取更多此類內容。 https://dev.to/copilotkit --- 原文出處:https://dev.to/copilotkit/30-ai-libraries-you-can-use-for-your-next-project-ideas-5ded

🌝 適合您下一個專案的 15 個 JavaScript 框架 ⚔

開發者生態系統已經發展了很多,並且有許多開發者不知道的框架。 我們「作為開發人員」有很多關於如何建立我們的應用程式的框架選項。這些選擇非常重要。 讓我們介紹 15 個框架,供您製作下一個專案。我將提供詳細的資源,以便您可以學習其中的每一個。 相信我!這份清單就是您所需要的。 讓我們開始吧。 ![下一級](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ychbi440selxu1ftf5n8.gif) --- ### 庫與框架 在開始之前,讓我們先來了解一下框架與函式庫有何不同。開發人員可以互換使用它! 函式庫和框架都是由其他人編寫的可重複使用程式碼。 > 簡單來說: 將圖書館想像成IKEA之旅。您家裡有自己的空間,但您需要一些家具幫助。您不想從頭開始,所以您可以前往宜家,在那裡您可以挑選您需要的東西。你是做出決定的人。 現在,框架更像是建造一個樣品房。您已經有了一套計劃以及一些佈局和設計的選擇。但最終,藍圖和建造者處於控制之中。他們會讓你知道在哪裡可以加入你的意見,但他們正在掌控一切。 > 從技術角度來說。 透過庫,您可以指導應用程式的流程。您決定何時何地使用庫的功能。但有了框架,框架就控制了流程。它為您提供了一些插入程式碼的位置,但它是程式碼執行時發號施令的地方。 我使用了 Freecodecamp 的這篇文章“ [框架和庫之間的區別](https://www.freecodecamp.org/news/the-difference-between-a-framework-and-a-library-bd133054023f/)”,特別是因為它的解釋很簡單。完整閱讀一下! --- 1. [Wing](https://git.new/winlang-repo) - 一種雲端程式語言。 --------------------------------------------------- ![翅膀](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/n97bowkrexjk46n94bcc.png) Wing是一個旨在開發雲端應用程式的框架。 它允許您在雲端中建立應用程式,並且具有相當簡單的語法。 核心概念是您可以直接在應用程式中指定資源。 您可以執行本機模擬並使用 Winglang 控制台視覺化每個步驟中發生的情況。 ![機翼基礎設施](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/eun3zd1gkp870rj57eeu.png) 你**程式碼**。**本地測試**。**編譯**。**部署到雲端提供者**。 Wing 需要 Node `v20 or higher` 。 建立一個父目錄(我們使用的是`shared-counter` )並使用 Vite 使用新的 React 應用程式設定前端。您可以使用這個 npm 指令。 ``` npm create -y vite frontend --template react-ts // once installed, you can check if it's running properly. cd frontend npm install npm run dev ``` 您可以使用此 npm 命令安裝 Wing。 ``` npm install -g winglang ``` 您可以使用`wing -V`驗證安裝。 Wing 還提供官方[VSCode 擴充功能](https://marketplace.visualstudio.com/items?itemName=Monada.vscode-wing)和[IntelliJ](https://plugins.jetbrains.com/plugin/22353-wing) ,後者提供語法突出顯示、補全、轉到定義和嵌入式 Wing 控制台支援。您可以在建立應用程式之前安裝它! 您可以使用 Wing 作為雲端後端來建立任何全端應用程式。 建立後端目錄。 ``` mkdir ~/shared-counter/backend cd ~/shared-counter/backend ``` 建立一個新的空 Wing 專案。 ``` wing new empty // This will generate three files: package.json, package-lock.json and main.w file with a simple "hello world" program wing it // to run it in the Wing simulator // The Wing Simulator will be opened in your browser and will show a map of your app with a single function. //You can invoke the function from the interaction panel and check out the result. ``` 使用指令`wing new empty`後的結構如下。 ``` bring cloud; // define a queue, a bucket, and a counter let bucket = new cloud.Bucket(); let counter = new cloud.Counter(initial: 1); let queue = new cloud.Queue(); // When a message is received in the queue -> it should be consumed // by the following closure queue.setConsumer(inflight (message: str) => { // Increment the distributed counter, the index variable will // store the value before the increment let index = counter.inc(); // Once two messages are pushed to the queue, e.g. "Wing" and "Queue". // Two files will be created: // - wing-1.txt with "Hello Wing" // - wing-2.txt with "Hello Queue" bucket.put("wing-{index}.txt", "Hello, {message}"); log("file wing-{index}.txt created"); }); ``` 您可以安裝`@winglibs/vite`來啟動開發伺服器,而不是使用`npm run dev`來啟動本機 Web 伺服器。 ``` // in the backend directory npm i @winglibs/vite ``` 您可以使用`backend/main.w`中提供的 publicEnv 將資料傳送到前端。 讓我們來看一個小例子。 ``` // backend/main.w bring vite; new vite.Vite( root: "../frontend", publicEnv: { TITLE: "Wing + Vite + React" } ); // import it in frontend // frontend/src/App.tsx import "../.winglibs/wing-env.d.ts" //You can access that value like this. <h1>{window.wing.env.TITLE}</h1> ``` 你還可以做更多: - 讀取/更新 API 路線並使用 Wing Simulator 檢查它。 - 使用後端獲取值。 - 使用`@winglibs/websockets`來同步瀏覽器,在後端部署一個 WebSocket 伺服器,你可以連接這個 WebSocket 來接收即時通知。 可以節省大量時間的一些功能包括熱重載,以獲得即時回饋並順利產生必要的安全策略。 無需學習每個雲端提供者的語法。 您的程式碼可以編譯到 AWS、GCP、Azure 或任何自訂平台。太棒了:D 您可以閱讀完整的逐步指南,以了解[如何使用 React 作為前端和 Wing 作為後端建立簡單的 Web 應用程式](https://www.winglang.io/docs/guides/react-vite-websockets)。測試是使用 Wing Simulator 完成的,並使用 Terraform 部署到 AWS。 部署後的AWS架構是這樣的。 ![建築學](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/27awil840ktgh3jvklij.png) 為了提供開發者選擇和更好的體驗,Wing 推出了對[TypeScript (Wing)](https://www.winglang.io/docs/typescript/)等其他語言的全面支援。唯一強制的事情是您必須安裝 Wing SDK。 這也將使控制台完全可用於本地偵錯和測試,而無需學習 Wing 語言。 該翼目前支援以下輸出: - AWS CDK 平台 - Terraform/AWS 平台 - Terraform/GCP 平台 - Terraform/Azure 平台 - 模擬器平台 - 客製化平台 Wing 甚至還有其他[指南](https://www.winglang.io/docs/category/guides),因此更容易遵循。 ![指南](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/31czxehkg10ezmlpf7ac.png) 您可以閱讀[文件](https://www.winglang.io/docs)並查看[範例](https://www.winglang.io/docs/category/examples)。 您也可以在[Playground](https://www.winglang.io/play/)中使用 Wing 查看結構和範例。 如果你比較像輔導員。看這個! {% 嵌入 https://www.youtube.com/watch?v=wzqCXrsKWbo %} ![機翼工作流程](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/l8zqja0w9kyoibrskjmp.gif) Wing 在 GitHub 上有 4500+ 顆星,1600+ 個版本,但仍未進入 v1 版本,這意味著意義重大。 {% cta https://git.new/winlang-repo %} 星翼 ⭐️ {% endcta %} --- 2. [Nest](https://github.com/nestjs/nest) - 高效且可擴展的伺服器端應用程式。 ------------------------------------------------------------ ![巢](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/inlcpt901r5kiwm4eeor.png) 一個先進的 Node.js 框架,用於使用 TypeScript/JavaScript 建立高效且可擴展的伺服器端應用程式。 它使用現代 JavaScript,使用 TypeScript 建構(保留與純 JavaScript 的兼容性),並結合了 OOP(物件導向程式設計)、FP(函數式程式設計)和 FRP(函數式反應式程式設計)的元素。 在底層,Nest 使用 Express,但也提供與 Fastify 等各種其他庫的兼容性,從而可以輕鬆使用無數可用的第三方外掛程式。 Nest 提供了高於這些常見 Node.js 框架(Express/Fastify)的抽象級別,但也直接向開發人員公開其 API。這為開發人員提供了一定程度的自由。 在我們了解更多之前,請觀看 100 秒內的 Nestjs! {% 嵌入 https://www.youtube.com/watch?v=0M8AYU\_hPas&amp;pp=ygUXZW1iZXIganMgaW4gMTAwIHNlY29uZHM%3D %} 考慮到它們提供的靈活性,您當然不必重新發明輪子。 ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/6h6yjfmq1h5qn5765by0.png) 這是使用 Nest CLI 設定新專案的方法。 ``` npm i -g @nestjs/cli nest new project-name ``` 這將引導該應用程式。 ``` import { NestFactory } from '@nestjs/core'; import { AppModule } from './app.module'; async function bootstrap() { const app = await NestFactory.create(AppModule); await app.listen(3000); } bootstrap(); ``` 您可以閱讀[文件](docs.nestjs.com)。 他們還提供一套付費課程(我想知道為什麼)。如果您需要完整的路線圖並想成為 Nest 的使用專家,請隨時查看它們。 但我建議使用 Freecodecamp 提供的這些免費教學來學習。 - [NestJs 初學者課程 - 建立 REST API](https://www.youtube.com/watch?v=GHTA143_b-s) - 大約 3.42 小時,涵蓋許多[主題](https://www.freecodecamp.org/news/learn-nestjs-by-building-a-crud-api/)。 - [綜合 NestJS 課程](https://www.youtube.com/watch?v=sFnAHC9lLaw&t=1s)- 涵蓋 20 個模組,時長 14 小時。 {% 嵌入 https://www.youtube.com/watch?v=sFnAHC9lLaw&amp;t=1s %} 如果您正在尋找入門專案,請學習[如何在 NestJS 中使用 Nodemailer 發送電子郵件](https://www.freecodecamp.org/news/how-to-use-nodemailer-in-nestjs/)。您可以使用它來獲得紮實的基礎知識。 Nest.js 擁有龐大的開發人員社區,並被許多公司使用。尋找已使用 Nest[的專案和公司的完整清單](https://docs.nestjs.com/discover/companies)。 ![公司](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ic0z3dts7bmw5s3e5gmf.png) 順便說一句,作為初學者,我最常擔心的是相似的名稱:Nextjs、Nuxtjs 和 Nestjs。我涵蓋了所有內容,這樣您就不必感到困惑。哈哈! Nest 在 GitHub 上擁有超過 64k 個 star,提交次數超過 15k,並且已發布`v10`版本。 {% cta https://github.com/nestjs/nest %} 星巢 ⭐️ {% endcta %} --- 3. [Gatsby](https://github.com/gatsbyjs/gatsby) - 最好的基於 React 的框架,具有內建的效能、可擴展性和安全性。 ----------------------------------------------------------------------------------- ![蓋茲比](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/b0drinpwldeyfxd82lgf.png) Gatsby 是一個基於 React 的免費開源框架,可協助開發人員建立速度極快的網站和應用程式。 它將動態呈現網站的控制和可擴展性與靜態網站生成的速度結合起來,創造了一個全新的可能性網絡。 Gatsby 從任何資料來源提取資料,無論是 Markdown 檔案、Contentful 或 WordPress 等無頭 CMS,還是 REST 或 GraphQL API。使用來源插件載入資料,然後使用 Gatsby 的統一 GraphQL 介面進行開發。 與 Next.js 不同,Gatsby 不執行伺服器端渲染。相反,它會在建置期間在客戶端產生 HTML 內容。 我見過一些使用 Gatsby 建立的優秀作品集。 開始使用以下 npm 指令。 ``` npm init gatsby ``` 它會要求提供網站標題和專案目錄的名稱。繼續按照提示選擇您的首選語言(JavaScript 或 TypeScript)、CMS、樣式工具和其他功能。 您可以這樣使用它。 ``` cd my-gatsby-site // to start the local dev server npm run develop ``` 您可以閱讀[文件](https://www.gatsbyjs.com/docs)。我個人很喜歡文件的流程。 您也可以按照[教學](https://www.gatsbyjs.com/docs/tutorial/getting-started/)開始,[操作指南](https://www.gatsbyjs.com/docs/how-to/)和[概念指南](https://www.gatsbyjs.com/docs/conceptual/)深入了解 Gatsby 概念以及網站架構。 Gatsby 提供了開箱即用的 PWA 和大量主題。使用 Gatsby 主題,您的所有預設配置(共享功能、資料來源、設計)都會從您的網站中抽象化出來,並放入可安裝的套件中。您可以閱讀有關[主題的](https://www.gatsbyjs.com/docs/themes/)更多資訊。 例如, `gatsby-theme-blog`是用於建立部落格的官方 Gatsby 主題。可能有可以透過`gatsby-config.js`配置的主題選項。 ``` npm install gatsby-theme-blog ``` 對於電子商務商店或廣泛的媒體網站等內容密集的企業級網站來說,Gatsby 並不是理想的解決方案。隨著內容大小的增加,建置時間將急劇增加。 尋找使用 Gatsby 建立的[606 個網站](https://www.gatsbyjs.com/showcase/)的清單。其中,53 個網站是開源的,因此這可以提供靈感,也是一個起點。 ![展示](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/439taxdhursvmjwhcxgc.png) 他們還提供了[大量按類別劃分的插件](https://www.gatsbyjs.com/plugins)以及每個插件中清晰的文件。其中一個範例是將 Google Analytics 新增至您的應用程式的插件。 ``` npm install gatsby-plugin-google-analytics ``` ![外掛](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rwq1dsyfdqdkmfetebj9.png) 您也可以使用 Gatsby 的[Starter 庫](https://www.gatsbyjs.com/starters/)。使用 Gatsby 建立下一個應用程式還需要什麼? ![入門庫](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/u831zo26ttg6tvzu6shq.png) 使用這些[參考指南](https://www.gatsbyjs.com/docs/reference/)來獲取有關 Gatsby API 的詳細資訊。 如果您喜歡完整的課程,我建議您觀看[Gatsby 靜態網站產生器教學](https://www.youtube.com/watch?v=RaTpreA0v7Q)- Freecodecamp 提供的 9 小時教學。 Gatsby 在 GitHub 上有 55,000 顆星,目前處於 v5 版本,並有超過 245,000 名開發人員使用。 {% cta https://github.com/gatsbyjs/gatsby %} 明星蓋茲比 ⭐️ {% endcta %} --- 4. [Nextjs](https://github.com/vercel/next.js) - Web 的 React 框架。 ---------------------------------------------------------------- ![下一個js](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/da26rscfzozpe307xz2g.png) 由於它提供的優化級別,它是我最喜歡的框架之一。 Next.js 使您能夠透過擴展最新的 React 功能並整合強大的基於 Rust 的 JavaScript 工具來建立全端 Web 應用程式,以實現最快的建置。 Next.js 由荷蘭公司 Vercel(以前稱為 ZEIT)於 2017 年建立。 Next.js 也像 Gatsby 一樣提供靜態產生器。 Next.js 的建置遵循`Build once, runs everywhere`的原則,因此您可以使用 Next.js 製作 Web 應用程式、行動應用程式、桌面應用程式和漸進式 Web 應用程式。 ![下一個js](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4j16td403jbbyyk7xz2v.png) Nextjs 提供了許多功能,例如檔案路由、渲染技術(例如 ISR)以及深層的圖像和字體最佳化。你可以檢查任何 nextjs 網站的 SEO 統計資料,在大多數情況下它都是一流的。 ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/zr9yx5n6gy2q764gak8x.png) ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5mf9r3zohetcsyatp90z.png) 開始使用以下 npm 指令。 ``` npx create-next-app@latest ``` 您可以閱讀[文件](https://nextjs.org/docs)並按照[本指南](https://nextjs.org/docs/getting-started/installation)開始使用。 其中涉及很多概念,閱讀完整的文件需要幾個月的時間。我前段時間寫過一篇文章,你可以看看。它並沒有出名,但它是我憑藉多年的 Nextjs 經驗編寫的最好的文章之一。我還提到了 Nextjs 團隊提供的[官方課程](https://nextjs.org/learn/dashboard-app/getting-started)。 {% 嵌入 https://dev.to/anmolbaranwal/12-things-you-didnt-know-you-could-do-with-nextjs-386b %} 如果您想透過 YouTube 教學進行學習,我建議您觀看這些最近的教程,因為文件更新得非常頻繁,因此最好觀看最近的內容,而不是幾年前的內容。 - \[帶有 TypeScript 的 Nextjs 13(應用程式路由器)\](https://www.youtube.com/watch?v=ZVnjOPwW4ZA&amp;pp=ygUTbmV4dGpzIGNyYXNoIGNvdXJzZQ%3D%3D ) - 1 小時教程。 - [Next.js 14 完整課程 2024](https://www.youtube.com/watch?v=wm5gMKuwSYk) - 3 小時教學。 您也可以觀看 Nextjs 100 秒。他們加入了一個基本教程,使其長達 11 分鐘。 {% 嵌入 https://www.youtube.com/watch?v=Sklc\_fQBmcs&amp;t=4s&amp;pp=ygUObmV4dGpzIGluIDEwMHM%3D %} 我自己使用文件學習了它,並使用它建置了超過 6 個專案,甚至是一個超過 20k 程式碼庫的 SAAS 應用程式。這就是為什麼我說,它是您可以選擇的最佳框架之一。 使用 Next.js 建立的一些熱門網站包括 Auth0、Coinbase、Docker、GitHub、Hulu、Netflix、Sesame、Starbucks、Trulia、Twitch 和 Uber。你可以看到所有使用Nextjs的[網站](https://nextjs.org/showcase)。 ![下一個js](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/iafbez4aptnb7f0iqtgz.png) 他們還提供了各種可以直接使用的[入門模板](https://vercel.com/templates/next.js)。 ![入門模板](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/1egye2mtz7f3ehzsm9ja.png) ![電子商務](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/d4ge39gpt0xo3rtvn1i5.png) Next 在 GitHub 上有 12 萬顆星,發布`v14.2`版本,在 NPM 上每週下載量超過 600 萬次。如其儲存庫所示,有 260 萬開發人員使用。 {% cta https://github.com/vercel/next.js %} 明星 Nextjs ⭐️ {% endcta %} --- 5. [Preact](https://github.com/preactjs/preact) - 具有相同現代 API 的快速 3kB React 替代品。 ------------------------------------------------------------------------------- ![預反應](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/npzj10prb5i8noahsops.png) Preact 是一個輕量級、快速、高效能的函式庫,是 React 的替代品。 Preact 的大小僅為 3kb(經過壓縮和壓縮),但卻為您提供了 React 所需的所有功能,使其成為最好的 JavaScript 框架之一。 Preact 的建立者 Jason Miller 是 Google 的高級開發者計畫工程師。 Preact 基本上具有 Virtual DOM 元件的所有功能,而沒有諸如以下的開銷: - 熟悉 React API 和 ES6 類別、鉤子和功能元件模式。 - 透過簡單的 preact/compat 別名實現廣泛的 React 相容性。 - 您需要的一切,例如 JSX、VDOM、DevTools、HMR、SSR。 在生產過程中,您可以輕鬆地從現有專案中的 React 切換到 Preact,因為它們支援相同的 API。 程式碼範例結構如下所示。您也可以查看此範例[程式碼筆](https://codepen.io/developit/pen/LpNOdm),您可以查看它以了解 Preact 中程式碼庫的結構。 ![程式碼結構](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/n3mwphw4vjfm1a3cquyv.png) 開始使用以下 npm 指令。 ``` npm init preact ``` 這是執行開發伺服器的方式。 ``` # Go into the generated project folder cd my-preact-app # Start a development server npm run dev ``` 您將必須配置一些東西,尤其是別名。請遵循[本指南](https://preactjs.com/guide/v10/getting-started)。 您可以閱讀[文件](https://preactjs.com/guide/v10/getting-started/)並查看詳細的[演示和範例](https://preactjs.com/about/demos-examples)清單。 他們還提供了基於 Web 的[教程](https://preactjs.com/tutorial/),您可以按照該教程來學習 Preact。 如果您需要範例應用程式、樣板檔案、元件、工具包等,請使用[Awesome Preact](https://github.com/preactjs/awesome-preact) 。 Preact 在 GitHub 上有 36,000 顆星,目前已發布`v10`版本。 {% cta https://github.com/preactjs/preact %} Star Preact ⭐️ {% endcta %} --- 6. [tRPC](https://github.com/trpc/trpc) - 端到端類型安全性 API 變得簡單。 ------------------------------------------------------------ ![特爾普克](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ck7ve1epya6ofshzmc2c.png) tRPC 可讓您輕鬆建立和使用完全類型安全的 API,而無需模式或程式碼產生。 ![gif 動態圖](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/2bssocrvw9pt0y1lnunk.gif) 上面的客戶端沒有從伺服器導入任何程式碼,僅導入其類型聲明 如果我們要深入了解,那麼您絕對應該閱讀一些歷史。 {% 嵌入 https://dev.to/zenstack/a-brief-history-of-api-rpc-rest-graphql-trpc-fme %} 目前,GraphQL 是在 TypeScript 中實作型別安全 API 的主要方式(這太棒了!)。由於 GraphQL 被設計為用於實現 API 的與語言無關的規範,因此它沒有充分利用 TypeScript 這樣的語言的強大功能。 如果您的專案是使用全端 TypeScript 建置的,您可以直接在客戶端和伺服器之間共用類型,而無需依賴程式碼生成。 tRPC 適用於全端 TypeScript 開發人員。它使您可以輕鬆編寫可以在應用程式的前端和後端安全使用的端點。 API 合約的類型錯誤將在建置時被捕獲,從而減少應用程式在執行時出現錯誤的可能性。 這是為 Mono 儲存庫設計的,因為您需要從伺服器匯出/匯入類型定義。 ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/6v56rl2jkgfat6xsf909.png) 開始使用以下 npm 指令。 ``` npm install @trpc/server@next @trpc/client@next ``` 您必須使用實例定義後端路由器。閱讀[快速入門指南](https://trpc.io/docs/quickstart)以了解更多詳細資訊。 了解[trpc 中涉及的概念](https://trpc.io/docs/concepts)(例如 rpc 和使用的術語)非常重要。 您可以閱讀[文件](https://trpc.io/docs)。 如果您已經在一個混合語言的團隊中工作,或者擁有您無法控制的第三方消費者,那麼您應該建立一個與語言無關的 GraphQL-API。 如果您想測試一下,我建議使用此[模板](https://github.com/new?template_name=examples-minimal&template_owner=trpc),其中包含一個最小的範例。 您還可以觀看這個[45 分鐘的 YouTube 教學](https://www.youtube.com/watch?v=UfUbBWIFdJs&pp=ygUMd2hhdCBpcyB0cnBj)來了解有關 trpc 的更多資訊。 {% 嵌入 https://www.youtube.com/watch?v=UfUbBWIFdJs&amp;pp=ygUMd2hhdCBpcyB0cnBj %} 它們在 GitHub 上擁有超過 32,000 顆星,目前處於`v11` beta 版本,並被 51,000 名開發人員使用。 {% cta https://github.com/trpc/trpc %} 啟動 tRPC ⭐️ {% endcta %} --- [7.Nuxtjs](https://github.com/nuxt/nuxt) - 直覺的 Vue 框架。 ------------------------------------------------------ ![努克斯特](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ct9usemwuhvtrjcx0na8.png) Nuxt 是一個基於 Vue.js 生態系統的漸進式開源框架,用於建立高效能 Web 應用程式,尤其是伺服器端渲染應用程式。 但請記住,Nuxt 並不是 Vue.js 的替代品,因為它無法單獨運作。而且它也不能被視為像 Express 這樣成熟的後端框架。 100 秒觀看 Nuxtjs,掌握整體概念。 {% 嵌入 https://www.youtube.com/watch?v=dCxSsr5xuL8 %} Nuxt 是建立這三種 Web 應用程式的最佳 JavaScript 框架之一 - 預先渲染靜態頁面、單頁 Web 應用程式 (SPA)、伺服器端渲染 Web 應用程式 (SSR) 甚至通用應用程式。 開發人員特別喜歡 Nuxt,因為它有豐富的函式庫和模組。 ![組合特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kknguo9v9dnqu2npfp68.png) 開始使用以下 npm 指令。 ``` npx nuxi@latest init <my-project> ``` 您可以閱讀[文件](https://nuxt.com/docs/getting-started/introduction)並檢查[codesandbox範例](https://codesandbox.io/s/github/nuxt/starter/tree/v3/)。 您可以按照本[指南](https://nuxt.com/docs/guide/concepts/auto-imports)了解更多關鍵概念。 有許多整合選項,因此您可以更輕鬆地繼續使用您喜歡的工具和服務。 ![整合選項](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/irikkgro0cp4l8svioi9.png) 您可以查看[免費課程清單](https://nuxt.com/video-courses)來了解 Nuxt 生態系統。 如果您想要推薦的課程,請學習[Nuxt 3 — 初學者課程](https://www.youtube.com/watch?v=fTPCKnZZ2dk)— Freecodecamp 提供的 3 小時教學。 使用 Nuxt 建立的一些流行網站包括 Aircall、Amplitude、Backmarket、Bitpay、Bootstrap Vue、Fox News、Gitlab、Icons8、Instrument、MyScript、Nespresso、Note.com、Ozon.ru、Roland Garros、System76、Todoist、加油,Wappalyzer 。尋找不同類別下[展示網站的完整清單](https://nuxt.com/showcase)。 如果您想快速測試和建置,那麼我建議您查看[入門模板](https://nuxt.com/templates)。 ![範本](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/bn61xrcx9ym3a40kewwf.png) Nuxt 在 GitHub 上擁有超過 51,000 顆星,並被超過 318,000 名開發者使用。 {% cta https://github.com/nuxt/nuxt %} Star Nuxt ⭐️ {% endcta %} --- 8. [Ember.js](https://github.com/emberjs/ember.js) - 用於建立雄心勃勃的 Web 應用程式的 JavaScript 框架。 --------------------------------------------------------------------------------------- ![man.js](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/z8ygtjex9ve6e2gbsfh0.png) Ember.js 是一個 JavaScript 框架,用於為企業建立可擴展的單頁 Web 應用程式。與其他框架不同,模型-視圖-視圖模型 (MVVW) 架構是 Ember 的基礎。 Ember.js 最初是一個 SproutCore 2.0 框架,由其建立者 Yehuda Katz 更名為 Ember.js,Yehuda Katz 是一位出色的開發人員,被譽為 jQuery 的主要建立者之一。 他們還提供命令列介面工具。 Ember CLI 是建立、建置、測試和提供構成 Ember 應用程式或外掛程式的檔案的官方方式。 ``` npm install -g ember-cli ``` 儘管與 React、Vue 和 Svelte 相比,Ember.js 是一個較舊的前端 JavaScript 框架,但它仍然具有強大的功能,並且在 Microsoft、LinkedIn、Netflix 和 Twitch 等大公司中擁有龐大的用戶群。查看[完整清單](https://emberjs.com/ember-users/)。 ![使用 ember.js 的公司](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0w87sxixh8js9luyv7jc.png) 借助強大的預設設置,您可能永遠不需要在應用程式中配置任何內容,但如果您需要的話,選項就在那裡! 這意味著 Ember.js 遵循「CoC – 約定優於配置」方法,這可確保在大多數情況下不需要任何配置,以便您可以直接跳到編碼和建立 Web 應用程式。 它們還支援類似於 AngularJS 的 2 路資料綁定。 當我們深入研究時,了解 ember.js 是如何誕生的、其建立背後的先驅者以及製作開源軟體時做出的改變生活的決定非常重要。看這個! {% 嵌入 https://www.youtube.com/watch?v=Cvz-9ccflKQ %} 安裝 Ember CLI 後。 ``` npm install -g ember-cli ``` 您可以建立一個新應用程式,如圖所示。 ``` ember new ember-quickstart --lang en cd ember-quickstart npm start ``` 您可以閱讀[詳細的快速入門文件](https://guides.emberjs.com/release/getting-started/quick-start/)和[官方指南](https://guides.emberjs.com/release/)。 要學習 ember.js,您可以按照他們的官方團隊建立的[逐步教程](https://guides.emberjs.com/release/tutorial/part-1/)進行操作。您可以在[Ember API 文件](https://api.emberjs.com/ember/release)上閱讀有關 API 的更多資訊。 有數以千計的 JavaScript 庫可以在 Ember 中很好地工作。當 npm 套件提供一些 Ember 特定的功能時,他們稱之為`addon` 。外掛程式提供了一種編寫可重複使用程式碼、共用元件和樣式、擴充建置工具等的方法,所有這些都只需最少的配置。尋找[插件的完整清單](https://emberobserver.com/)。 ![外掛](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/wlrw4m6u46fijp7kt7ky.png) 如果您正在尋找更多文章來學習 Ember.js,我推薦這些: - [Ember JS Essentials:Startech 提供的安裝及其功能的初學者指南](https://www.startechup.com/blog/ember-js/)。 - Toptal [建立您的第一個 Ember.js 應用程式的指南](https://www.toptal.com/javascript/a-step-by-step-guide-to-building-your-first-ember-js-app)。 這足以理解結構並決定 Ember 何時適合您的專案。 他們在 GitHub 上有 22k+ 顆星,而`v5.8`版本有 500 多個版本。 {% cta https://github.com/emberjs/ember.js %} 明星 Ember.js ⭐️ {% endcta %} --- 9. [Backbone.js](https://github.com/jashkenas/backbone) - 為您的 JS 應用程式提供一些帶有模型、視圖、集合和事件的 Backbone。 ------------------------------------------------------------------------------------------------- ![骨幹](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qysm5n76o7wdf1u48bii.png) Backbone.js 是一個基於 JavaScript 的框架,透過 RESTful JSON 介面連接到 API。 Jeremy Ashkenas 因建立一些最好的 JavaScript 框架(例如 CoffeeScript 和 Underscore.js)而聞名,他於 2010 年 10 月推出了 Backbone.js。 它旨在建立單頁 Web 應用程式並維護不同 Web 應用程式元件(例如眾多客戶端和伺服器)之間的同步。 Backbone.js 以小而輕而聞名,因為它只需要 jQuery 和一個 JavaScript 函式庫 Underscore.js 即可使用整個函式庫。 Backbone.js 透過提供具有鍵值綁定和自訂事件的模型、具有豐富的可枚舉函數API 的集合、具有聲明性事件處理的視圖,為JavaScript 密集型應用程式提供結構,並透過RESTful JSON 接口將其全部連接到您現有的應用程式。 這是一個簡單的主幹視圖。 ``` var AppView = Backbone.View.extend({ // el - stands for element. Every view has an element associated with HTML // content will be rendered. el: '#container', // It's the first function called when this view is instantiated. initialize: function(){ this.render(); }, // $el - it's a cached jQuery object (el), in which you can use jQuery functions // to push content. Like the Hello World in this case. render: function(){ this.$el.html("Hello World"); } }); ``` 您可以閱讀[文件](https://backbonejs.org/)。 Backbone.js 被許多值得信賴的公司使用,例如 Walmart、Pinterest、SoundCloud 等。 您可以參考他們的[wiki](https://github.com/jashkenas/backbone/wiki/Tutorials%2C-blog-posts-and-example-sites) ,其中記錄了教程、部落格文章和範例網站。 您可以參考幾篇很棒的文章來了解更多: - [BackboneJS:入門](https://auth0.com/blog/backbonejs-getting-started/)- 推薦。 - [適合絕對初學者的 Backbone.js](https://adrianmejia.com/backbone-dot-js-for-absolute-beginners-getting-started/) - [BackboneJS 教學](https://www.tutorialspoint.com/backbonejs/index.htm)- 教學點。 根據儲存庫統計,它們在 GitHub 上擁有超過 28,000 顆星,並被超過 66,000 名開發人員使用。 {% cta https://github.com/jashkenas/backbone %} 明星 Backbone.js ⭐️ {% endcta %} --- 10. [Svelte](https://github.com/sveltejs/svelte) - 控制論增強的網路應用程式。 ---------------------------------------------------------------- ![苗條的](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/r8xe2ni4di3g5qr03woh.png) Svelte 是一種建立 Web 應用程式的新方法。 它是由 Rich Harris(著名前端開發人員)建立的。 Svelte 於 2016 年首次推出,人氣暴漲。 許多開發人員認為 Svelte 是一個真正改變遊戲規則的革命性想法,它從根本上改變了我們編碼 Web 應用程式的方式。 與 React 或 Vue.js 等其他 JavaScript 框架不同,Svelte 沒有虛擬 DOM。相反,您可以使用簡單的 HTML、CSS 和 JavaScript 程式碼來建立無樣板的元件。 然後,Svelte Compiler 在建置期間將此程式碼編譯成小型的無框架的普通 JavaScript 模組,並在狀態變更時精確地更新 DOM。 因此,與 React 或 Vue.js 等其他傳統框架不同,Svelte 不需要很高的瀏覽器處理能力。 Svelte 依靠反應式程式來徹底更新 DOM。因此,與幾乎任何其他框架相比,它可以實現最快的渲染,並且在大多數效能基準測試中名列前茅。 開始使用以下 npm 指令。 ``` npm create svelte@latest my-app ``` 您可以這樣使用它。 ``` cd my-app npm install npm run dev -- --open ``` 您可以閱讀[文件](https://svelte.dev/docs/introduction)。該團隊還提供了[官方的 VSCode 擴展](https://marketplace.visualstudio.com/items?itemName=svelte.svelte-vscode),它也可以與各種其他編輯器和工具整合。 ![苗條的](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/322jqc224gf3efcifmjs.png) 他們還提供了[詳細的基於網路的教程](https://svelte.dev/tutorial/basics)來學習 Svelte。 您可以查看所有[範例](https://svelte.dev/examples/nested-components)來了解關鍵概念和結構,包括 DOM 事件、生命週期、運動、過渡和處理 SVG。 ![例子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4vfwmw0q3p68byme0b4c.png) 您可以觀看這些教學來了解有關 Svelte 的所有知識。 - [Learn Svelte – 初學者完整課程](https://www.youtube.com/watch?v=UGBJHYpHPvA)– Freecodecamp 的 23 小時教學。 - [Sveltekit &amp; Tailwind](https://www.youtube.com/watch?v=vb7CgDcA_6U&t=2s) - Freecodecamp 的 2 小時教學。 非常感謝老師們免費提供如此詳細的教學! Svelte 在 GitHub 上擁有超過 76k 顆星,目前處於`v4.2`版本,有 282k 開發人員使用。 {% cta https://github.com/sveltejs/svelte %} Star Svelte ⭐️ {% endcta %} --- 11. [Remix](https://github.com/remix-run/remix) - 建立更好的網站。 ---------------------------------------------------------- ![混音](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/en7mvytauu0b7pkm04df.png) Remix 是一個全端Web 框架,可讓您專注於使用者介面並透過Web 基礎知識進行工作,以提供快速、流暢且有彈性的使用者體驗,可部署到任何Node.js 伺服器,甚至非Node. js 環境像 Cloudflare Workers 這樣的邊緣。 Remix 建構在 React Router 之上,有四個特點: - 一個編譯器 - 伺服器端 HTTP 處理程序 - 一個伺服器框架 - 一個瀏覽器框架 您可以觀看此內容以了解有關 Remix by Fireship 的更多資訊。 {% 嵌入 https://www.youtube.com/watch?v=r4B69HAOXnA&amp;pp=ygUUcmVtaXggaW4gMTAwIHNlY29uZHM%3D %} 透過嵌套路由,Remix 可以消除幾乎所有載入狀態,如圖所示。 ![混音](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/wyr8c9opmrn4chvr88jz.png) 開始使用以下 npm 指令。 ``` npx create-remix@latest ``` 您可以這樣使用它。 ``` mkdir my-remix-app cd my-remix-app npm init -y # install runtime dependencies npm i @remix-run/node @remix-run/react @remix-run/serve isbot@4 react react-dom # install dev dependencies npm i -D @remix-run/dev vite ``` 如果您想包含您的伺服器,請閱讀此[快速入門指南](https://remix.run/docs/en/main/start/quickstart),並了解更多有關如何透過 Remix Vite 插件提供 Vite 配置的訊息,因為 Remix 使用 Vite。 您可以閱讀[文件](https://remix.run/docs/en/main)。他們根據你想做的事情來分發它,順便說一句,我很喜歡。 ![文件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ljjae4pcyukr1j4nnweo.png) 尋找使用 Remix 建立的[網站的完整清單](https://remix.run/showcase)。 ![混音](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qjzhuy4njph0gckemdq5.png) 您還應該查看社區製作的[Remix 資源](https://remix.run/resources?category=all)。其中一些是有幫助的,可以改善整個生態系統。 ![生態系統](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9q5hdc59czs31nkbyhqq.png) 如果您是第一次接觸 Remix,我建議您閱讀官方團隊建立的[Remix 教學 -30min](https://remix.run/docs/en/main/start/tutorial) 。 他們在 GitHub 上擁有超過 27k 個 star,並且發布了`v2.8`版本。 {% cta https://github.com/remix-run/remix %} 明星混音 ⭐️ {% endcta %} --- 12. [AdonisJS](https://github.com/adonisjs/core) - TypeScript 優先的 Web 框架,用於建立 Web 應用程式和 API 伺服器。 ------------------------------------------------------------------------------------------------ ![阿多尼斯](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/k8ishs5q78nu1yc3qrl4.png) AdonisJS 是一個功能齊全的 Node.js 後端框架。該框架是從頭開始建立的,非常重視開發人員的人體工學和易用性。 AdonisJS 專注於後端,讓您選擇您選擇的前端堆疊,這意味著前端不可知。 它是 Node.js 社群中最稀有的框架之一,附帶一套第一方包,可幫助您建立和發布產品,而無需浪費數百小時組裝不同的 npm 包。 在基礎層面上,AdonisJS 為您的應用程式提供架構,配置無縫的 TypeScript 開發環境,為您的後端程式碼配置 HMR,並提供大量維護良好且記錄廣泛的軟體包。 他們強調了一點測試,這是非常好的。 ![測試](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/g623aysi86rucg45yvru.png) 開始使用以下 npm 指令。 ``` npm init adonisjs@latest hello-world ``` AdonisJS 採用經典的 MVC 設計模式。首先,使用函數式 JavaScript API 定義路由,將控制器綁定到它們,並編寫邏輯來處理控制器內的 HTTP 請求。 ``` import router from '@adonisjs/core/services/router' import PostsController from '#controllers/posts_controller' router.get('posts', [PostsController, 'index']) ``` 控制器可以使用模型從資料庫中獲取資料並呈現視圖(也稱為模板)作為回應。 ``` import { HttpContext } from '@adonisjs/core/http' import Post from '#models/post' export default class PostsController { async index({ view }: HttpContext) { const posts = await Post.all() return view.render('pages/posts/list', { posts }) } } ``` 如果您正在建立 API 伺服器,則可以用 JSON 回應取代視圖層。但是,處理和回應 HTTP 請求的流程保持不變。 您可以閱讀[文件](https://docs.adonisjs.com/guides/introduction)。 您也可以參考[入門套件](https://docs.adonisjs.com/guides/installation#starter-kits)。 他們還提供了[VSCode 擴展,](https://marketplace.visualstudio.com/items?itemName=jripouteau.adonis-vscode-extension)如果您開始使用 Adonisjs,則應該使用該擴展。 您必須查看[Awesome Adonisjs](https://github.com/adonisjs-community/awesome-adonisjs) ,它提供了一系列很棒的書籤、軟體包、教程、影片、課程、擁有使用此內容的網站的公司以及來自 AdonisJS 生態系統的其他很酷的資源。 大多數時候,開始接觸一些非常新的東西是很困難的,因此團隊提供了[10 多個課程](https://adonismastery.com/)來了解 Adonisjs 生態系統。 ![培訓班](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nkhw95z0kxkg4wcopzxb.png) ![培訓班](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/iqisrlqefivdt8ozfwzv.png) 他們在 GitHub 上擁有超過 15k 個 star,並且發布了`v6.8`版本。 {% cta https://github.com/adonisjs/core %} 明星 AdonisJS ⭐️ {% endcta %} --- 13. [Astro](https://github.com/withastro/astro) - 內容驅動網站的網頁框架。 -------------------------------------------------------------- ![阿斯特羅](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7o0f21nevycm4kaqgytq.png) Astro 是一個開源、伺服器優先的 Web 框架,它結合了靜態網站產生 (SSG) 和伺服器端渲染 (SSR) 的優點,可建立快速、SEO 友善的網站。 Astro 專門為部落格和電子商務等內容豐富的網站提供支持,並擁有良好的開發生態系統。 開始使用以下 npm 指令。 ``` npm create astro@latest ``` 您可以閱讀使用 Astro 建立的[文件](https://docs.astro.build/en/getting-started/)和[展示的網站](https://astro.build/showcase/)。其中一些真的很棒並且視覺上令人驚嘆! Astro 支援 React、Preact、Svelte、Vue、Solid、Lit、HTMX、Web 元件等。閱讀所有[記錄的功能](https://docs.astro.build/en/concepts/why-astro/#features)。 您可以按照本教學[使用 Astro 建立您的第一個部落格](https://docs.astro.build/en/tutorial/0-introduction/)。或使用主題來快速啟動您的下一個專案。其中一些是免費的,而另一些則是付費的! ![主題](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/06r4rgm0e87djv8otb3o.png) 您可以看到如圖所示的加載性能,甚至我對此感到驚訝。 ![天文表演](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nctfb8xzgz6dbg1wwg99.png) 性能至關重要,尤其是在您從事商業活動時,因為高效的演算法將節省更多資金並減少麻煩。 ![表現](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/a7db56tvaxi40youys75.png) 無論是在可存取性、圖標還是使用不同的庫方面,[整合選項](https://astro.build/integrations/)都是巨大的。 ![整合選項](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qezjrdyaq1pvwvq4kanm.png) 您可以觀看 Freecodecamp 提供的一小時[Astro Web 框架速成課程](https://www.youtube.com/watch?v=e-hTm5VmofI)。 {% 嵌入 https://www.youtube.com/watch?v=e-hTm5VmofI %} Astro 在 GitHub 上擁有超過 42k 顆星,處於`v4.6` (1800 多個版本),並由超過 112k 開發人員使用。 {% cta https://github.com/withastro/astro %} Star Astro ⭐️ {% endcta %} --- 14. [Fresh](https://github.com/denoland/fresh) - 下一代網路框架。 --------------------------------------------------------- ![新鮮的](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/3978f35p4m3xg9vf9rsg.png) Fresh 是下一代 Web 框架,專為速度、可靠性和簡單性而建置。 一些突出的特點: - 島上的客戶水合作用可達到最大程度的互動。 - 零執行時開銷意味著預設不會將 JS 傳送到客戶端。 - 無需配置。 - 開箱即用的 TypeScript 支援。 該框架使用 Preact 和 JSX 進行渲染和模板化,處理伺服器和客戶端上的任務。 此外,Fresh 消除了建造步驟的需要。您編寫的程式碼直接在伺服器端和客戶端執行。 TypeScript 或 JSX 到純 JavaScript 的轉換是在需要時動態發生的。這有助於實現極其快速的迭代周期和快速部署。 從這個開始吧。 ``` deno run -A -r https://fresh.deno.dev ``` Fresh 採用的最重要的架構決策是其對[島嶼架構模式](https://www.patterns.dev/vanilla/islands-architecture)的使用。 這意味著 Fresh 應用程式預設將純 HTML 發送到客戶端。然後,伺服器渲染頁面的某些部分可以透過互動式小工具(島嶼)獨立重新水化。 客戶端只負責渲染頁面中互動性足以保證額外工作的部分。任何純靜態內容都沒有相關的客戶端 JavaScript,因此非常輕量級。 您可以閱讀[文件](https://fresh.deno.dev/docs/introduction)。 您可以找到所有使用此建立的[網站](https://fresh.deno.dev/showcase),例如[Max Schmidt](https://mooxl.dev/)的投資組合網站。 ![使用新鮮製作的投資組合網站](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5j9xwjw86by873vjkvk0.png) 他們在 GitHub 上擁有超過 11k 個 star,並且發布了`v1.6`版本。 {% cta https://github.com/denoland/fresh %} 明星新鮮 ⭐️ {% endcta %} --- 15. [Vue.js](https://github.com/vuejs/core) - 用於在網路上建立 UI 的漸進式 JavaScript 框架。 ----------------------------------------------------------------------------- ![看法](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/2a8rdd0xohokbf0mx35q.png) Vue.js 是一個漸進式框架,因為它能夠透過雙整合模式促進高階單頁 Web 應用程式的設計。閱讀[使用 Vue 的所有方法](https://vuejs.org/guide/extras/ways-of-using-vue.html),包括從嵌入 Web 元件到獨立腳本,甚至使用伺服器端渲染或靜態網站生成來建立複雜的應用程式。 ![vue 用例](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nxetclturvms3ve712u9.png) 使用 MVVM(模型-視圖-視圖模型)架構,Vue.js 讓事情變得簡單、靈活且適合初學者。 Vue.js 於 2014 年由 Google 的開發人員 Evan You 首次推出,他從 AngularJS 中汲取靈感,提供了一種簡單、輕量級且高效的替代方案。 Vue.js 借用了 ReactJS 和 AngularJS 的一些功能,並對其進行了增強,以提供更流暢、更用戶友好的體驗。例如,Vue.js 將 AngularJS 的 2 路資料綁定與 React 的高效虛擬 DOM 結合。 與 React 不同,Vue 有一個內建的 MVC,可以快速輕鬆地進行設定。此外,Vue.js 的壓縮版本只有 18-20 kb,比其臃腫笨重的競爭對手(如 React 或 AngularJS)輕得多。 Vue.js 還包含一個方便的內建 CSS 過渡和動畫元件。 100 秒觀看 Vue.js 了解更多! {% 嵌入 https://www.youtube.com/watch?v=nhBVL41-\_Cw&amp;pp=ygUXZW1iZXIganMgaW4gMTAwIHNlY29uZHM%3D %} 開始使用以下 npm 指令。 ``` npm create vue@latest ``` 該命令將安裝並執行 create-vue,官方的 Vue 專案腳手架工具。您將收到有關多個可選功能的提示,例如 TypeScript 和測試支援。 這是啟動開發伺服器的方法。 ``` cd <your-project-name> npm install npm run dev ``` 一個簡單的應用程式。 ``` import { createApp } from 'vue' createApp({ data() { return { count: 0 } } }).mount('#app') <div id="app"> <button @click="count++"> Count is: {{ count }} </button> </div> ``` 上面的例子展示了Vue的兩個核心特性: 1. **聲明式渲染**:Vue 使用模板語法擴充了標準 HTML,該模板語法基於 JavaScript 狀態以聲明方式描述 HTML 輸出。 2. **反應性**:Vue 會自動追蹤 JavaScript 狀態變化,並在變化發生時有效地更新 DOM。 您也可以使用 CDN 來使用它,CDN 將使用全域建置。閱讀[快速入門指南](https://vuejs.org/guide/quick-start)以了解更多資訊。 您可以閱讀[文件](https://vuejs.org/guide/introduction)並查看不同主題的[程式碼編輯器範例](https://vuejs.org/examples/#hello-world),甚至可以了解如何建立 Markdown 編輯器。 要體驗 Vue.js,您也可以直接在他們的[現場 Playground](https://play.vuejs.org/#eNp9kVFLwzAQx7/KeS9TmBuiT6MOVAbqg4oKvuSltLeuM01CcpmF0u/utaXVhzEISe7/vyS/yzV459ziEAlXmITMl47XylDtrGfIaZtGzdAoA5CnnJ5fDHsATxy9GSOAKhQrmD2S1ha+rNf52Wyw2m6RSUaynB6QgKlyOmWSCCDZXa2bprsF2jZZStSrpXGR4XBZ2Zz0rULxFYqVLKfTOEcOmTXbsljsgzVSRw+lMLOVKzX5V8elNUHhasRVmArnz3OvsY80H/VsR9n3EX0f6k5T+OYpkD+Qwsnj1BfEg735eKFa9pMp5FFL9gnznYLVsWMc0u6jyQX7X15P+1R1PSlN8Rk2NZMJY1EdaP/Jfb5CaebDidL/cK8XN2NzsP0F+HSp8w==)中嘗試。 我非常喜歡的一篇關於 Vue 的文章是 Michael 在 DEV 上發表的。必讀! {% 嵌入 https://dev.to/michaelthiessen/25-vue-tips-you-need-to-know-2h70 %} 如果您剛開始,您可以按照他們的團隊建立的[官方教程](https://vuejs.org/tutorial/#step-1)進行操作。 ![教學](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/sf7dhgd0843jkpru9y27.png) 與 Astro 類似,他們也有[課程部分](https://www.vuemastery.com/courses/)和[Vue School](https://vueschool.io/) ,您可以在其中找到各種主題。 ![賽車視圖](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/s4gixw8cd2ltkippi68h.png) Vue.js 為許多知名網站提供支持,包括 Font Awesome、Upwork 和 Namecheap 等。 Freecodecamp 有一個[針對初學者的 3 小時 Vue](https://www.youtube.com/watch?v=4deVCNJq3qc)教程,但我不推薦它,因為它是 2019 年的,而且我們知道這些框架中的概念變化有多快。 他們在 GitHub 上擁有超過 44k 個 star,並且發布了`v3.4`版本。它是有史以來最受開發人員喜愛的框架之一。 {% cta https://github.com/vuejs/core %} Star Vuejs ⭐️ {% endcta %} --- 還有很多其他框架,您可以查看其中一些: [Aurelia.js](https://github.com/aurelia/framework) 、 [Mithril.js](https://github.com/MithrilJS/mithril.js) 、 [Stimulus.js](https://github.com/hotwired/stimulus) 、 [Meteor.js](https://github.com/meteor/meteor) 、 [Angular.js](https://github.com/angular/angular) 、 [React.js](https://github.com/facebook/react) 、 [Knockout.js](https://github.com/knockout/knockout)和[Alpine.js](https://github.com/alpinejs/alpine) 。 是的,我知道,我同時感到 😵 和興奮。哈哈! 我有一些影片推薦,可以讓本文更加深入。 {% 嵌入 https://www.youtube.com/watch?v=cuHDQhDhvPE&amp;pp=ygUXZW1iZXIganMgaW4gMTAwIHNlY29uZHM%3D %} {% 嵌入 https://www.youtube.com/watch?v=WJRf7dh5Zws&amp;pp=ygURZW1iZXIganMgdHV0b3JpYWw%3D %} --- 我特意製作了這一系列教程,以幫助您在一個地方找到所有內容。我希望你喜歡這個! 雖然我是 Next.js 的忠實粉絲,但探索 Wing 等其他出色的框架可能非常適合您的下一個專案。 讓我們知道您計劃使用哪些框架,或者您認為其他人是否應該了解其他內容。 祝你有美好的一天!直到下一次。 我建立技術內容是為了幫助其他人每天成長 1%,這樣您就可以在 Twitter 和 LinkedIn 上關注我以獲得每日見解。 |如果你喜歡這類東西, 請關注我以了解更多:) | [![用戶名 Anmol_Codes 的 Twitter 個人資料](https://img.shields.io/badge/Twitter-d5d5d5?style=for-the-badge&logo=x&logoColor=0A0209)](https://twitter.com/Anmol_Codes) [![用戶名 Anmol-Baranwal 的 GitHub 個人資料](https://img.shields.io/badge/github-181717?style=for-the-badge&logo=github&logoColor=white)](https://github.com/Anmol-Baranwal) [![用戶名 Anmol-Baranwal 的 LinkedIn 個人資料](https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/Anmol-Baranwal/) | |------------|----------| 關注Winglang以獲取更多此類內容。 {% 嵌入 https://dev.to/winglang %} --- 原文出處:https://dev.to/winglang/15-javascript-frameworks-for-your-next-project-1o7n

如何讓 AI 融入您的使用者(Next.js、OpenAI、CopilotKit)

長話短說 ---- 在本文中,您將了解如何建立基於 AI 的行銷活動管理應用程式,該應用程式可讓您建立和分析廣告活動,從而使您能夠為您的業務做出正確的決策。 我們將介紹如何: - 使用 Next.js 建立 Web 應用程式, - 使用 CopilotKit 將 AI 助理整合到軟體應用程式中,以及 - 建立特定於操作的人工智慧副駕駛來處理應用程式中的各種任務。 - 建立一名競選經理 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9xqpz356qm79t90f1l87.gif) --- CopilotKit:建構應用內人工智慧副駕駛的框架 -------------------------- CopilotKit是一個[開源的AI副駕駛平台](https://github.com/CopilotKit/CopilotKit)。我們可以輕鬆地將強大的人工智慧整合到您的 React 應用程式中。 建造: - ChatBot:上下文感知的應用內聊天機器人,可以在應用程式內執行操作 💬 - CopilotTextArea:人工智慧驅動的文字字段,具有上下文感知自動完成和插入功能📝 - 聯合代理:應用程式內人工智慧代理,可以與您的應用程式和使用者互動🤖 ![https://media.dev.to/cdn-cgi/image/width=800%2Cheight=%2Cfit=scale-down%2Cgravity=auto%2Cformat=auto/https%3A%2F%2Fdev-to-uploads.s3 .amazonaws.com%2Fuploads%2Farticles%2Fx3us3vc140aun0dvrdof.gif](https://media.dev.to/cdn-cgi/image/width=800%2Cheight=%2Cfit=scale-down%2Cgravity=auto%2Cformat=auto/https%3A%2F%2Fdev-to-uploads.s3.amazonaws.com%2Fuploads%2Farticles%2Fx3us3vc140aun0dvrdof.gif) {% cta https://git.new/devtoarticle1 %} Star CopilotKit ⭐️ {% endcta %} --- 先決條件 ---- 要完全理解本教程,您需要對 React 或 Next.js 有基本的了解。 我們還將利用以下內容: - [Radix UI](https://www.radix-ui.com/) - 用於為應用程式建立可存取的 UI 元件。 - [OpenAI API 金鑰](https://platform.openai.com/api-keys)- 使我們能夠使用 GPT 模型執行各種任務。 - [CopilotKit](https://github.com/CopilotKit/CopilotKit) - 一個開源副駕駛框架,用於建立自訂 AI 聊天機器人、應用程式內 AI 代理程式和文字區域。 --- 專案設定和套件安裝 --------- 首先,透過在終端機中執行以下程式碼片段來建立 Next.js 應用程式: ``` npx create-next-app campaign-manager ``` 選擇您首選的配置設定。在本教學中,我們將使用 TypeScript 和 Next.js App Router。 ![Next.js 應用程式安裝](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/xboujt60i6lpoaqgjyap.png) 接下來,將[Heroicons](https://www.npmjs.com/package/@heroicons/react) 、 [Radix UI](https://www.radix-ui.com/)及其原始元件安裝到專案中。 ``` npm install @heroicons/react @radix-ui/react-avatar @radix-ui/react-dialog @radix-ui/react-dropdown-menu @radix-ui/react-icons @radix-ui/react-label @radix-ui/react-popover @radix-ui/react-select @radix-ui/react-slot @radix-ui/react-tabs ``` 另外,安裝[Recharts 程式庫](https://recharts.org/en-US)(一個用於建立互動式圖表的 React 程式庫)以及以下實用程式套件: ``` npm install recharts class-variance-authority clsx cmdk date-fns lodash react-day-picker tailwind-merge tailwindcss-animate ``` 最後,安裝[CopilotKit 軟體套件](https://docs.copilotkit.ai/getting-started/quickstart-chatbot)。這些套件使 AI copilot 能夠從 React 狀態檢索資料並在應用程式中做出決策。 ``` npm install @copilotkit/react-ui @copilotkit/react-textarea @copilotkit/react-core @copilotkit/backend ``` 恭喜!您現在已準備好建立應用程式。 --- 使用 Next.js 建立 Campaign Manager 應用程式 ----------------------------------- 在本節中,我將引導您建立活動管理器應用程式的使用者介面。 首先,讓我們進行一些初始設定。 在`src`資料夾中建立一個`components`和`lib`資料夾。 ``` cd src mkdir components lib ``` 在**`lib`**資料夾中,我們將聲明應用程式的靜態類型和預設活動。因此,在**`lib`**資料夾中建立**`data.ts`**和**`types.ts`**檔案。 ``` cd lib touch data.ts type.ts ``` 將下面的程式碼片段複製到`type.ts`檔中。它聲明了活動屬性及其資料類型。 ``` export interface Campaign { id: string; objective?: | "brand-awareness" | "lead-generation" | "sales-conversion" | "website-traffic" | "engagement"; title: string; keywords: string; url: string; headline: string; description: string; budget: number; bidStrategy?: "manual-cpc" | "cpa" | "cpm"; bidAmount?: number; segment?: string; } ``` 為應用程式建立預設的行銷活動清單並將其複製到`data.ts`檔案中。 ``` import { Campaign } from "./types"; export let DEFAULT_CAMPAIGNS: Campaign[] = [ { id: "1", title: "CopilotKit", url: "https://www.copilotkit.ai", headline: "Copilot Kit - The Open-Source Copilot Framework", description: "Build, deploy, and operate fully custom AI Copilots. In-app AI chatbots, AI agents, AI Textareas and more.", budget: 10000, keywords: "AI, chatbot, open-source, copilot, framework", }, { id: "2", title: "EcoHome Essentials", url: "https://www.ecohomeessentials.com", headline: "Sustainable Living Made Easy", description: "Discover our eco-friendly products that make sustainable living effortless. Shop now for green alternatives!", budget: 7500, keywords: "eco-friendly, sustainable, green products, home essentials", }, { id: "3", title: "TechGear Solutions", url: "https://www.techgearsolutions.com", headline: "Innovative Tech for the Modern World", description: "Find the latest gadgets and tech solutions. Upgrade your life with smart technology today!", budget: 12000, keywords: "tech, gadgets, innovative, modern, electronics", }, { id: "4", title: "Global Travels", url: "https://www.globaltravels.com", headline: "Travel the World with Confidence", description: "Experience bespoke travel packages tailored to your dreams. Luxury, adventure, relaxation—your journey starts here.", budget: 20000, keywords: "travel, luxury, adventure, tours, global", }, { id: "5", title: "FreshFit Meals", url: "https://www.freshfitmeals.com", headline: "Healthy Eating, Simplified", description: "Nutritious, delicious meals delivered to your door. Eating well has never been easier or tastier.", budget: 5000, keywords: "healthy, meals, nutrition, delivery, fit", }, ]; ``` 由於我們使用 Radix UI 建立可以使用 TailwindCSS 輕鬆自訂的基本 UI 元件,因此請在**`lib`**資料夾中建立一個**`utils.ts`**文件,並將以下程式碼片段複製到該文件中。 ``` //👉🏻 The lib folder now contains 3 files - data.ts, type.ts, util.ts //👇🏻 Copy the code below into the "lib/util.ts" file. import { type ClassValue, clsx } from "clsx"; import { twMerge } from "tailwind-merge"; export function cn(...inputs: ClassValue[]) { return twMerge(clsx(inputs)); } export function randomId() { return Math.random().toString(36).substring(2, 15); } ``` 導航到`components`資料夾並在其中建立其他三個資料夾。 ``` cd components mkdir app dashboard ui ``` `components/app`資料夾將包含應用程式中使用的各種元件,而儀表板資料夾包含某些元素的 UI 元件。 `ui`資料夾包含使用 Radix UI 建立的多個 UI 元素。將[專案儲存庫中的這些元素](https://github.com/CopilotKit/campaign-manager-demo/tree/main/src/components/ui)複製到該資料夾中。 恭喜! `ui`資料夾應包含必要的 UI 元素。現在,我們可以使用它們來建立應用程式中所需的各種元件。 ### 建立應用程式 UI 元件 在這裡,我將引導您完成為應用程式建立使用者介面的過程。 ![應用程式使用者介面](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9l4lvv4394gg033oatwq.png) 首先,導航至**`app/page.tsx`**檔案並將以下程式碼片段貼到其中。該文件呈現在**`components/app`**資料夾中聲明的 App 元件。 ``` "use client"; import { App } from "@/components/app/App"; export default function DashboardPage() { return <App />; } ``` 在`components/app`資料夾中建立`App.tsx` 、 `CampaignForm.tsx` 、 `MainNav.tsx`和`UserNav.tsx`檔案。 ``` cd components/app touch App.tsx CampaignForm.tsx MainNav.tsx UserNav.tsx ``` 將下面的程式碼片段複製到`App.tsx`檔案中。 ``` "use client"; import { DEFAULT_CAMPAIGNS } from "@/lib/data"; import { Campaign } from "@/lib/types"; import { randomId } from "@/lib/utils"; import { Dashboard } from "../dashboard/Dashboard"; import { CampaignForm } from "./CampaignForm"; import { useState } from "react"; import _ from "lodash"; export function App() { //👇🏻 default segments const [segments, setSegments] = useState<string[]>([ "Millennials/Female/Urban", "Parents/30s/Suburbs", "Seniors/Female/Rural", "Professionals/40s/Midwest", "Gamers/Male", ]); const [campaigns, setCampaigns] = useState<Campaign[]>( _.cloneDeep(DEFAULT_CAMPAIGNS) ); //👇🏻 updates campaign list function saveCampaign(campaign: Campaign) { //👇🏻 newly created campaign if (campaign.id === "") { campaign.id = randomId(); setCampaigns([campaign, ...campaigns]); } else { //👇🏻 existing campaign - search for the campaign and updates the campaign list const index = campaigns.findIndex((c) => c.id === campaign.id); if (index === -1) { setCampaigns([...campaigns, campaign]); } else { campaigns[index] = campaign; setCampaigns([...campaigns]); } } } const [currentCampaign, setCurrentCampaign] = useState<Campaign | undefined>( undefined ); return ( <div className='relative'> <CampaignForm segments={segments} currentCampaign={currentCampaign} setCurrentCampaign={setCurrentCampaign} saveCampaign={(campaign) => { if (campaign) { saveCampaign(campaign); } setCurrentCampaign(undefined); }} /> <Dashboard campaigns={campaigns} setCurrentCampaign={setCurrentCampaign} segments={segments} setSegments={setSegments} /> </div> ); } ``` - 從上面的程式碼片段來看, - 我為行銷活動建立了預設細分列表,並對已定義的行銷活動列表進行了深層複製。 - `saveCampaign`函數接受行銷活動作為參數。如果行銷活動沒有 ID,則表示它是新建立的,因此會將其新增至行銷活動清單。否則,它會找到該活動並更新其屬性。 - `Dashboard`和`CampaignForm`元件接受細分和行銷活動作為 props。 [Dashboard 元件](https://github.com/CopilotKit/campaign-manager-demo/blob/main/src/components/dashboard/Dashboard.tsx)在儀表板上顯示各種 UI 元素,而[CampaignForm 元件](https://github.com/CopilotKit/campaign-manager-demo/blob/main/src/components/app/CampaignForm.tsx)使用戶能夠在應用程式中建立和保存新的行銷活動。 您也可以使用[GitHub 儲存庫](https://github.com/CopilotKit/campaign-manager-demo/tree/main/src/components)中的程式碼片段來更新儀表板和應用程式元件。 恭喜!您應該有一個有效的 Web 應用程式,可讓使用者查看和建立新的行銷活動。 在接下來的部分中,您將了解如何將 CopilotKit 加入到應用程式中,以根據每個行銷活動的目標和預算進行分析和決策。 ![應用概述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4phyaucli8pdcbe625u4.gif) --- 使用 CopilotKit 透過 AI 分析廣告活動 -------------------------- 在這裡,您將學習如何將人工智慧加入到應用程式中,以幫助您分析行銷活動並做出最佳決策。 在繼續之前,請造訪[OpenAI 開發者平台](https://platform.openai.com/api-keys)並建立一個新的金鑰。 ![取得 OpenAI API 金鑰](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/02972pt2aj3kf9l5suqq.png) 建立一個`.env.local`檔案並將新建立的金鑰複製到該檔案中。 ``` OPENAI_API_KEY=<YOUR_OPENAI_SECRET_KEY> OPENAI_MODEL=gpt-4-1106-preview ``` 接下來,您需要為 CopilotKit 建立 API 端點。在 Next.js 應用程式資料夾中,建立一個包含`route.ts`檔案的`api/copilotkit`資料夾。 ``` cd app mkdir api && cd api mkdir copilotkit && cd copilotkit touch route.ts ``` 將下面的程式碼片段複製到`route.ts`檔中。 [CopilotKit 後端](https://docs.copilotkit.ai/reference/CopilotBackend)接受使用者的請求並使用 OpenAI 模型做出決策。 ``` import { CopilotBackend, OpenAIAdapter } from "@copilotkit/backend"; export const runtime = "edge"; export async function POST(req: Request): Promise<Response> { const copilotKit = new CopilotBackend({}); const openaiModel = process.env["OPENAI_MODEL"]; return copilotKit.response(req, new OpenAIAdapter({ model: openaiModel })); } ``` 若要將您的應用程式連接到此 API 端點,請更新`app/page.tsx`文件,如下所示: ``` "use client"; import { App } from "@/components/app/App"; import { CopilotKit } from "@copilotkit/react-core"; import { CopilotSidebar } from "@copilotkit/react-ui"; export default function DashboardPage() { return ( <CopilotKit url='/api/copilotkit/'> <CopilotSidebar instructions='Help the user create and manage ad campaigns.' defaultOpen={true} labels={{ title: "Campaign Manager Copilot", initial: "Hello there! I can help you manage your ad campaigns. What campaign would you like to work on?", }} clickOutsideToClose={false} > <App /> </CopilotSidebar> </CopilotKit> ); } ``` `CopilotKit`元件包裝整個應用程式並接受包含 API 端點連結的`url`屬性。 `CopilotSidebar`元件為應用程式加入了一個聊天機器人側邊欄面板,使我們能夠向 CopilotKit 提供各種指令。 ![將 CopilotKit 加入 Next.js](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/wzh8ui253ftzmgtrcksd.gif) ### 如何讓AI副駕駛執行各種動作 CopilotKit 提供了兩個鉤子,使我們能夠處理使用者的請求並插入應用程式狀態: [useCopilotAction](https://docs.copilotkit.ai/reference/useCopilotAction)和[useMakeCopilotReadable](https://docs.copilotkit.ai/reference/useMakeCopilotReadable) 。 `useCopilotAction`掛鉤可讓您定義 CopilotKit 執行的動作。它接受包含以下參數的物件: - name - 操作的名稱。 - 描述 - 操作的描述。 - 參數 - 包含所需參數清單的陣列。 - render - 預設的自訂函數或字串。 - handler - 由操作觸發的可執行函數。 ``` useCopilotAction({ name: "sayHello", description: "Say hello to someone.", parameters: [ { name: "name", type: "string", description: "name of the person to say greet", }, ], render: "Process greeting message...", handler: async ({ name }) => { alert(`Hello, ${name}!`); }, }); ``` `useMakeCopilotReadable`掛鉤向 CopilotKit 提供應用程式狀態。 ``` import { useMakeCopilotReadable } from "@copilotkit/react-core"; const appState = ...; useMakeCopilotReadable(JSON.stringify(appState)); ``` CopilotKit 還允許您為使用者提示提供上下文,使其能夠做出充分且準確的決策。 將`guidance.ts`和`script.ts`加入到專案內的`lib`資料夾中,並將此[指導](https://github.com/CopilotKit/campaign-manager-demo/blob/main/src/lib/guideline.ts)和[腳本建議](https://github.com/CopilotKit/campaign-manager-demo/blob/main/src/lib/script.ts)複製到檔案中,以便 CopilotKit 做出決策。 在應用程式元件中,將當前日期、腳本建議和指導傳遞到 CopilotKit。 ``` import { GUIDELINE } from "@/lib/guideline"; import { SCRIPT_SUGGESTION } from "@/lib/script"; import { useCopilotAction, useMakeCopilotReadable, } from "@copilotkit/react-core"; export function App() { //-- 👉🏻 ...other component functions //👇🏻 Ground the Copilot with domain-specific knowledge for this use-case: marketing campaigns. useMakeCopilotReadable(GUIDELINE); useMakeCopilotReadable(SCRIPT_SUGGESTION); //👇🏻 Provide the Copilot with the current date. useMakeCopilotReadable("Today's date is " + new Date().toDateString()); return ( <div className='relative'> <CampaignForm segments={segments} currentCampaign={currentCampaign} setCurrentCampaign={setCurrentCampaign} saveCampaign={(campaign) => { if (campaign) { saveCampaign(campaign); } setCurrentCampaign(undefined); }} /> <Dashboard campaigns={campaigns} setCurrentCampaign={setCurrentCampaign} segments={segments} setSegments={setSegments} /> </div> ); } ``` 在`App`元件中建立一個 CopilotKit 操作,該操作可在使用者提供此類指令時建立新的活動或編輯現有的活動。 ``` useCopilotAction({ name: "updateCurrentCampaign", description: "Edit an existing campaign or create a new one. To update only a part of a campaign, provide the id of the campaign to edit and the new values only.", parameters: [ { name: "id", description: "The id of the campaign to edit. If empty, a new campaign will be created", type: "string", }, { name: "title", description: "The title of the campaign", type: "string", required: false, }, { name: "keywords", description: "Search keywords for the campaign", type: "string", required: false, }, { name: "url", description: "The URL to link the ad to. Most of the time, the user will provide this value, leave it empty unless asked by the user.", type: "string", required: false, }, { name: "headline", description: "The headline displayed in the ad. This should be a 5-10 words", type: "string", required: false, }, { name: "description", description: "The description displayed in the ad. This should be a short text", type: "string", required: false, }, { name: "budget", description: "The budget of the campaign", type: "number", required: false, }, { name: "objective", description: "The objective of the campaign", type: "string", enum: [ "brand-awareness", "lead-generation", "sales-conversion", "website-traffic", "engagement", ], }, { name: "bidStrategy", description: "The bid strategy of the campaign", type: "string", enum: ["manual-cpc", "cpa", "cpm"], required: false, }, { name: "bidAmount", description: "The bid amount of the campaign", type: "number", required: false, }, { name: "segment", description: "The segment of the campaign", type: "string", required: false, enum: segments, }, ], handler: (campaign) => { const newValue = _.assign( _.cloneDeep(currentCampaign), _.omitBy(campaign, _.isUndefined) ) as Campaign; setCurrentCampaign(newValue); }, render: (props) => { if (props.status === "complete") { return "Campaign updated successfully"; } else { return "Updating campaign"; } }, }); ``` {% 嵌入 https://www.youtube.com/watch?v=gCJpH6Tnj5g %} 新增另一個模擬 API 呼叫的操作,以允許 CopilotKit 從先前建立的活動中檢索歷史資料。 ``` // Provide this component's Copilot with the ability to retrieve historical cost data for certain keywords. // Will be called automatically when needed by the Copilot. useCopilotAction({ name: "retrieveHistoricalData", description: "Retrieve historical data for certain keywords", parameters: [ { name: "keywords", description: "The keywords to retrieve data for", type: "string", }, { name: "type", description: "The type of data to retrieve for the keywords.", type: "string", enum: ["CPM", "CPA", "CPC"], }, ], handler: async ({ type }) => { // fake an API call that retrieves historical data for cost for certain keywords based on campaign type (CPM, CPA, CPC) await new Promise((resolve) => setTimeout(resolve, 2000)); function getRandomValue(min: number, max: number) { return (Math.random() * (max - min) + min).toFixed(2); } if (type == "CPM") { return getRandomValue(0.5, 10); } else if (type == "CPA") { return getRandomValue(5, 100); } else if (type == "CPC") { return getRandomValue(0.2, 2); } }, render: (props) => { // Custom in-chat component rendering. Different components can be rendered based on the status of the action. let label = "Retrieving historical data ..."; if (props.args.type) { label = `Retrieving ${props.args.type} for keywords ...`; } if (props.status === "complete") { label = `Done retrieving ${props.args.type} for keywords.`; } const done = props.status === "complete"; return ( <div className=''> <div className=' w-full relative max-w-xs'> <div className='absolute inset-0 h-full w-full bg-gradient-to-r from-blue-500 to-teal-500 transform scale-[0.80] bg-red-500 rounded-full blur-3xl' /> <div className='relative shadow-xl bg-gray-900 border border-gray-800 px-4 py-8 h-full overflow-hidden rounded-2xl flex flex-col justify-end items-start'> <h1 className='font-bold text-sm text-white mb-4 relative z-50'> {label} </h1> <p className='font-normal text-base text-teal-200 mb-2 relative z-50 whitespace-pre'> {props.args.type && `Historical ${props.args.type}: ${props.result || "..."}`} </p> </div> </div> </div> ); }, }); ``` ![應用程式預覽](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kz3xm63ciq5q3kyooz9s.gif) 恭喜!您已完成本教學的專案。 結論 -- [CopilotKit](https://copilotkit.ai/)是一款令人難以置信的工具,可讓您在幾分鐘內將 AI Copilot 加入到您的產品中。無論您是對人工智慧聊天機器人和助理感興趣,還是對複雜任務的自動化感興趣,CopilotKit 都能讓您輕鬆實現。 如果您需要建立 AI 產品或將 AI 工具整合到您的軟體應用程式中,您應該考慮 CopilotKit。 您可以在 GitHub 上找到本教學的源程式碼: <https://github.com/CopilotKit/campaign-manager-demo> 感謝您的閱讀! --- 原文出處:https://dev.to/copilotkit/build-an-ai-powered-campaign-manager-nextjs-openai-copilotkit-59ii

我用新的程式語言微調了我的模型。你也可以做到! 🚀

我使用 OpenAI ChatGPT-4 一段時間了。 對此我沒什麼好說的。 但有時,這還不夠。 在[Winglang](https://github.com/winglang/wing)中,我們希望使用 OpenAI 和 ChatGPT-4 根據我們的文件回答人們的問題。 您的選擇是: - 使用[OpenAI 助理](https://platform.openai.com/docs/assistants/overview?context=with-streaming)或任何其他基於向量的資料庫 (RAG)。由於 Wing 看起來像 JS,所以效果很好,但仍然有很多錯誤。 - 將整個文件傳遞到上下文視窗的成本非常高。 很快,我們意識到這是行不通的。 是時候舉辦我們自己的法學碩士課程了。 ![問題](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/o9x9ng6feh6x739djcb0.gif) --- 您的 LLM 資料集 ========== 在訓練模型之前,我們需要建立用於訓練模型的資料。在我們的例子中,是 Winglang 文件。我會做一些非常簡單的事情。 1. 從網站地圖中提取所有 URL,設定 GET 請求並收集內容。 2. 解析它;我們希望將所有 HTML 轉換為可讀內容。 3. 使用 ChatGPT 4 執行它,將內容轉換為 CSV 作為資料集。 它應該是這樣的: ![法學碩士資料集](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/e2xq8lm4b31k8pop4gmc.png) 完成後,儲存包含一列名為`text`的 CSV 並新增問題和答案。我們稍後會用到它。它應該看起來像這樣: ``` text <s>[INST]How to define a variable in Winglang[/INST] let a = 'Hello';</s> <s>[INST]How to create a new lambda[/INST] bring cloud; let func = new cloud.Function(inflight () => { log('Hello from the cloud!'); });</s> ``` 將其保存在電腦上名為`data`新資料夾中。 --- Autotrain,您的模型 ============== 我的電腦很弱,所以我決定使用更小的模型 - 7b 參數: `mistralai/Mistral-7B-v0.1` 訓練模型的方法有數百萬種。我們將使用 Huggingface Autotrain。我們將使用他們的 CLI,而不執行任何 Python 程式碼🚀 當您使用 Huggingface 的 Autotrain 時,您可以在電腦上訓練它(這裡是我的方法)或在他們的伺服器上訓練它(付費)並訓練更大的模型。 我的舊 Macbook Pro M1 2021 沒有 GPU。 讓我們安裝自動訓練。 ``` pip install -U autotrain-advanced autotrain setup > setup_logs.txt ``` 然後,我們需要做的就是執行 autotrain 指令: ``` autotrain llm \ --train \ --model "mistralai/Mistral-7B-Instruct-v0.2" \ --project-name "autotrain-wing" \ --data-path data/ \ --text-column text \ --lr "0.0002" \ --batch-size "1" \ --epochs "3" \ --block-size "1024" \ --warmup-ratio "0.1" \ --lora-r "16" \ --lora-alpha "32" \ --lora-dropout "0.05" \ --weight-decay "0.01" \ --gradient-accumulation "4" \ --quantization "int4" \ --mixed-precision "fp16" \ --peft ``` 完成後,您將擁有一個名為“autotrain-wing”的新目錄,其中包含新的微調模型🚀 --- 玩模型 --- 要使用模型,請先執行: ``` pip install transformers torch ``` 完成後,使用以下程式碼建立一個名為 invoke.py 的新 Python 檔案: ``` from transformers import pipeline # Path to your local model directory model_path = "./autotrain-wing" # Load the model and tokenizer from the local directory classifier = pipeline("text-classification", model=model_path, tokenizer=model_path) # Example text to classify text = "Example text to classify" result = classifier(text) print(result) ``` 然後您可以透過執行 CLI 命令來執行它: ``` python invoke.py ``` 你就完成了🚀 --- 繼續攻讀法學碩士 -------- 我仍在學習法學碩士。 我意識到的一件事是追蹤模型的變化並不容易。 你不能真正將它與 Git 一起使用,因為模型可以達到非常大的大小 &gt; 100 GB;這沒有多大意義——git 不能很好地處理它。 更好的方法是使用名為[KitOps 的](https://github.com/jozu-ai/kitops/)工具。 我認為它很快就會成為法學碩士世界的標準,所以請確保你給這個庫加註星標,以便以後可以使用它。 1. 下載最新的[KitOps 版本](https://github.com/jozu-ai/kitops/releases/tag/v0.1.3)並[安裝它](https://kitops.ml/docs/cli/installation.html)。 2. 轉到模型資料夾並執行命令來打包您的 LLM: ``` kit pack . ``` 3. 您也可以透過執行將其推送到 Docker hub ``` kit pack . -t [your registry address]/[your repository name]/mymodelkit:latest ``` > 💡 要了解如何使用 DockerHub,[請檢查此](https://kitops.ml/docs/quick-start.html) {% cta https://github.com/jozu-ai/kitops %}⭐️ Star KitOps,以便您稍後可以再次找到它⭐️{% endcta %} [![星庫](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/362tc5831i5ozbsau2o3.png)](https://github.com/jozu-ai/kitops) --- 我建立了一個新的 YouTube 頻道,主要是關於開源行銷:) (例如如何獲得星星、叉子和客戶端) 如果您對此感興趣,請隨時在這裡訂閱: https://www.youtube.com/@nevo-david?sub\_confirmation=1 --- 原文出處:https://dev.to/github20k/i-fine-tuned-my-model-on-a-new-programming-language-you-can-do-it-too-449

🚀 21 個將你的開發技能帶上月球的工具 🌝

我見過數百種人工智慧工具,其中許多正在改變世界。 作為開發人員,總是有很多事情需要學習,因此專注於節省時間來處理重要的事情非常重要。 我將介紹 21 個供開發人員使用的工具,它們可以讓您的生活更輕鬆,特別是在開發人員體驗方面。 相信我,這份清單會讓你大吃一驚! 我們開始做吧。 --- 1. [Taipy](https://github.com/Avaiga/taipy) - 將資料和人工智慧演算法整合到生產就緒的 Web 應用程式中。 ---------------------------------------------------------------------------- ![打字](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/wd10iiofzmt4or4db6ej.png) Taipy 是一個開源 Python 庫,可用於輕鬆的端到端應用程式開發,具有假設分析、智慧管道執行、內建調度和部署工具。 我相信你們大多數人都不明白 Taipy 用於為基於 Python 的應用程式建立 GUI 介面並改進資料流管理。 關鍵是性能,而 Taipy 是最佳選擇。 雖然 Streamlit 是一種流行的工具,但在處理大型資料集時,其效能可能會顯著下降,這使得它在生產級使用上不切實際。 另一方面,Taipy 在不犧牲性能的情況下提供了簡單性和易用性。透過嘗試 Taipy,您將親身體驗其用戶友好的介面和高效的資料處理。 ![大資料支持](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/xnvk0tozn0lgj083rzcb.gif) Taipy 有許多整合選項,可以輕鬆地與領先的資料平台連接。 ![整合](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7yv31uir3erina587zp8.png) 開始使用以下命令。 ``` pip install taipy ``` 我們來談談最新的[Taipy v3.1 版本](https://docs.taipy.io/en/latest/relnotes/)。 最新版本使得在 Taipy 的多功能零件物件中可視化任何 HTML 或 Python 物件成為可能。 這意味著[Folium](https://python-visualization.github.io/folium/latest/) 、 [Bokeh](https://bokeh.org/) 、 [Vega-Altair](https://altair-viz.github.io/)和[Matplotlib](https://matplotlib.org/)等程式庫現在可用於視覺化。 這也帶來了對[Plotly python](https://plotly.com/python/)的原生支持,使繪製圖表變得更加容易。 他們還使用分散式運算提高了效能,但最好的部分是 Taipy,它的所有依賴項現在都與 Python 3.12 完全相容,因此您可以在使用 Taipy 進行專案的同時使用最新的工具和程式庫。 您可以閱讀[文件](https://docs.taipy.io/en/latest/)。 ![用例](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/xdvnbejf9aivxmqsd3hx.png) 另一個有用的事情是,Taipy 團隊提供了一個名為[Taipy Studio](https://docs.taipy.io/en/latest/manuals/studio/)的 VSCode 擴充功能來加速 Taipy 應用程式的建置。 ![太皮工作室](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kc1umm5hcxes0ydbuspb.png) 您也可以使用 Taipy 雲端部署應用程式。 如果您想閱讀部落格來了解程式碼庫結構,您可以閱讀 HuggingFace[的使用 Taipy 在 Python 中為您的 LLM 建立 Web 介面](https://huggingface.co/blog/Alex1337/create-a-web-interface-for-your-llm-in-python)。 嘗試新技術通常很困難,但 Taipy 提供了[10 多個演示教程,](https://docs.taipy.io/en/release-3.1/gallery/)其中包含程式碼和適當的文件供您遵循。 ![示範](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4wigid2aokt6spkkoivr.png) 例如,一些演示範例和專案想法: - [即時污染儀表板](https://docs.taipy.io/en/release-3.0/knowledge_base/demos/pollution_sensors/) 使用工廠周圍的感測器測量空氣品質的用例,展示 Taipy 儀表板流資料的能力。檢查[GitHub 儲存庫](https://github.com/Avaiga/demo-realtime-pollution)。 - [詐欺辨識](https://docs.taipy.io/en/release-3.0/knowledge_base/demos/fraud_detection/) Taipy 應用程式可分析信用卡交易以偵測詐欺行為。檢查[GitHub 儲存庫](https://github.com/Avaiga/demo-fraud-detection)。 - [新冠儀表板](https://docs.taipy.io/en/release-3.0/knowledge_base/demos/covid_dashboard/) 這使用 2020 年的 Covid 資料集。還有一個預測頁面來預測傷亡人數。檢查[GitHub 儲存庫](https://github.com/Avaiga/demo-covid-dashboard)。 - [建立 LLM 聊天機器人](https://docs.taipy.io/en/release-3.0/knowledge_base/demos/chatbot/) 該演示展示了 Taipy 使最終用戶能夠使用 LLM 執行推理的能力。在這裡,我們使用 GPT-3 建立一個聊天機器人,並將對話顯示在互動式聊天介面中。您可以輕鬆更改程式碼以使用任何其他 API 或模型。檢查[GitHub 儲存庫](https://github.com/Avaiga/demo-chatbot)。 - [即時人臉辨識](https://docs.taipy.io/en/release-3.0/knowledge_base/demos/face_recognition/) 該演示將人臉辨識無縫整合到我們的平台中,使用網路攝影機提供使用者友好的即時人臉偵測體驗。檢查[GitHub 儲存庫](https://github.com/Avaiga/demo-face-recognition)。 這些用例非常驚人,所以一定要檢查一下。 Taipy 在 GitHub 上有 8.2k+ Stars,並且處於`v3.1`版本,因此它們正在不斷改進。 {% cta https://github.com/Avaiga/taipy %} Star Taipy ⭐️ {% endcta %} --- 2. [DevToys](https://github.com/DevToys-app/DevToys) - 開發者的瑞士軍刀。 ---------------------------------------------------------------- ![開發玩具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7zfl1wjr01fdvca6wxbi.png) DevToys 協助完成日常開發任務,例如格式化 JSON、比較文字和測試 RegExp。 這樣,就無需使用不可信的網站來處理您的資料執行簡單的任務。透過智慧型偵測,DevToys 可以偵測用於複製到 Windows 剪貼簿的資料的最佳工具。 緊湊的覆蓋範圍讓您可以保持應用程式較小並位於其他視窗之上。最好的部分是可以同時使用應用程式的多個實例。 我可以肯定地說,開發人員甚至不知道這個很棒的專案。 最後是一款專為 Windows 生態系統設計的軟體。哈哈! ![工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/i7wd60jsgdb5tx2t2adi.png) 他們提供的一些工具是: > 轉換器 - JSON &lt;&gt; YAML - 時間戳 - 數基數 - 規劃任務解析器 ![轉換器](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/g8x784fx53x6ia02zal0.png) > 編碼器/解碼器 - 超文本標記語言 - 網址 - Base64 文字與圖片 - 壓縮包 - 智威湯遜解碼器 ![編碼器](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/73ts4x1vtcy4yswsmytw.png) > 格式化程式 - JSON - SQL - XML ![XML](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/e5dc8ko2baywta82ymq5.png) > 發電機 - 哈希(MD5、SHA1、SHA256、SHA512) - UUID 1 和 4 - 洛雷姆·伊普蘇姆 - 校驗和 ![發電機](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/cwsq8xig6jf69wr99iuv.png) > 文字 - 逃脫/逃脫 - 檢驗員和箱子轉換器 - 正規表示式測試器 - 文字比較 - XML驗證器 - 降價預覽 ![MD預覽](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/vcbkse1i5324qg3xu1yd.png) ![文字差異](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/hlqqib4fcjimc03pdrwr.png) > 形象的 - 色盲模擬器 - 顏色選擇器和對比度 - PNG / JPEG 壓縮器 - 影像轉換器 ![圖形工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/631upekcqzh62xyrdjwt.png) 我不了解你,但我不會錯過這個! 您可以閱讀[如何執行 DevToys](https://github.com/DevToys-app/DevToys?tab=readme-ov-file#how-to-run-devtoys) 。 關於許可證的註解。 DevToys 使用的授權允許將應用程式作為試用軟體或共享軟體重新分發而無需進行任何更改。然而,作者 Etienne BAUDOUX 和 BenjaminT 不希望你這樣做。如果您認為自己有充分的理由這樣做,請先與我們聯絡討論。 他們在 GitHub 上有 23k Stars,並且使用 C#。 {% cta https://github.com/DevToys-app/DevToys %} 明星 DevToys ⭐️ {% endcta %} --- 3. [Pieces](https://github.com/pieces-app) - 您的工作流程副駕駛。 ------------------------------------------------------- ![件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qf2qgqtpv78fxw5guqm5.png) Pieces 是一款支援人工智慧的生產力工具,旨在透過智慧程式碼片段管理、情境化副駕駛互動和主動呈現有用材料來幫助開發人員管理混亂的工作流程。 它最大限度地減少了上下文切換、簡化了工作流程並提升了整體開發體驗,同時透過完全離線的 AI 方法維護了工作的隱私和安全性。太棒了:D ![整合](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/f2ro3rcwnqp4qrmv5e8s.png) 它與您最喜歡的工具無縫集成,以簡化、理解和提升您的編碼流程。 它具有比表面上看到的更令人興奮的功能。 - 它可以透過閃電般快速的搜尋體驗找到您需要的材料,讓您根據您的喜好透過自然語言、程式碼、標籤和其他語義進行查詢。可以放心地說“您的個人離線谷歌”。 - Pieces 使用 OCR 和 Edge-ML 升級螢幕截圖,以提取程式碼並修復無效字元。因此,您可以獲得極其準確的程式碼提取和深度元資料豐富。 您可以查看 Pieces 可用[功能的完整清單](https://pieces.app/features)。 您可以閱讀[文件](https://docs.pieces.app/)並存取[網站](https://pieces.app/)。 他們為 Pieces OS 用戶端提供了一系列 SDK 選項,包括[TypeScript](https://github.com/pieces-app/pieces-os-client-sdk-for-typescript) 、 [Kotlin](https://github.com/pieces-app/pieces-os-client-sdk-for-kotlin) 、 [Python](https://github.com/pieces-app/pieces-os-client-sdk-for-python)和[Dart](https://github.com/pieces-app/pieces-os-client-sdk-for-dart) 。 就開源流行度而言,他們仍然是新的,但他們的社群是迄今為止我見過的最好的社群之一。加入他們,成為 Pieces 的一部分! {% cta https://github.com/pieces-app/ %} 星星碎片 ⭐️ {% endcta %} --- 4. [Infisical-](https://github.com/Infisical/infisical)秘密管理平台。 -------------------------------------------------------------- ![內部的](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/jrolzjdnkky1r694h9av.png) Infisical 是一個開源秘密管理平台,團隊可以用它來集中 API 金鑰、資料庫憑證和設定等秘密。 他們讓每個人(而不僅僅是安全團隊)都可以更輕鬆地進行秘密管理,這意味著從頭開始重新設計整個開發人員體驗。 就我個人而言,我不介意使用 .env 文件,因為我並不特別謹慎。不過,您可以閱讀[立即停止使用 .env 檔案!](https://dev.to/gregorygaines/stop-using-env-files-now-kp0)由格雷戈里來理解。 他們提供了四種 SDK,分別用於<a href="">Node.js</a> 、 <a href="">Python</a> 、 <a href="">Java</a>和<a href="">.Net</a> 。您可以自行託管或使用他們的雲端。 開始使用以下 npm 指令。 ``` npm install @infisical/sdk ``` 這是使用入門 (Node.js SDK) 的方法。 ``` import { InfisicalClient, LogLevel } from "@infisical/sdk"; const client = new InfisicalClient({ clientId: "YOUR_CLIENT_ID", clientSecret: "YOUR_CLIENT_SECRET", logLevel: LogLevel.Error }); const secrets = await client.listSecrets({ environment: "dev", projectId: "PROJECT_ID", path: "/foo/bar/", includeImports: false }); ``` ![內部](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/h3eu288l470du91b66pd.png) Infisical 還提供了一組工具來自動防止 git 歷史記錄的秘密洩露。可以使用預提交掛鉤或透過與 GitHub 等平台直接整合在 Infisical CLI 層級上設定此功能。 您可以閱讀[文件](https://infisical.com/docs/documentation/getting-started/introduction)並檢查如何[安裝 CLI](https://infisical.com/docs/cli/overview) ,這是使用它的最佳方式。 Infisical 還可用於將機密注入 Kubernetes 叢集和自動部署,以便應用程式使用最新的機密。有很多整合選項可用。 ![內部](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5x0tvt5ycaiqhggv6wml.png) 在使用整個原始程式碼之前一定要檢查他們的[許可證](https://github.com/Infisical/infisical/blob/main/LICENSE),因為他們有一些受 MIT Expat 保護的企業級程式碼,但不用擔心,大部分程式碼都是免費使用的。 他們在 GitHub 上擁有超過 11k 顆星星,並且發布了超過 125 個版本,因此他們正在不斷發展。另外,Infiscial CLI 的安裝次數超過 540 萬次,因此非常值得信賴。 {% cta https://github.com/Infisical/infisical %} 明星 Infisical ⭐️ {% endcta %} --- 5. [Mintlify](https://github.com/mintlify/writer) - 在建置時出現的文件。 -------------------------------------------------------------- ![精簡](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/gvk07kmn8p48cpssogov.png) Mintlify 是一款由人工智慧驅動的文件編寫器,您只需 1 秒鐘即可編寫程式碼文件 :D 幾個月前我發現了 Mintlify,從那時起我就一直是它的粉絲。我見過很多公司使用它,甚至我使用我的商務電子郵件產生了完整的文件,結果證明這是非常簡單和體面的。如果您需要詳細的文件,Mintlify 就是解決方案。 主要用例是根據我們將在此處討論的程式碼產生文件。當您編寫程式碼時,它會自動記錄程式碼,以便其他人更容易跟上。 您可以安裝[VSCode 擴充功能](https://marketplace.visualstudio.com/items?itemName=mintlify.document)或將其安裝在[IntelliJ](https://plugins.jetbrains.com/plugin/18606-mintlify-doc-writer)上。 您只需突出顯示程式碼或將遊標放在要記錄的行上。然後點選「編寫文件」按鈕(或按 ⌘ + 。) 您可以閱讀[文件](https://github.com/mintlify/writer?tab=readme-ov-file#%EF%B8%8F-mintlify-writer)和[安全指南](https://writer.mintlify.com/security)。 如果您更喜歡教程,那麼您可以觀看[Mintlify 的工作原理](https://www.loom.com/embed/3dbfcd7e0e1b47519d957746e05bf0f4)。它支援 10 多種程式語言,並支援許多文件字串格式,例如 JSDoc、reST、NumPy 等。 順便說一句,他們的網站連結是[writer.mintlify.com](https://writer.mintlify.com/) ;回購協議中目前的似乎是錯誤的。 Mintlify 是一個方便的工具,用於記錄程式碼,這是每個開發人員都應該做的事情。它使其他人更容易有效地理解您的程式碼。 它在 GitHub 上有大約 2.5k 顆星,基於 TypeScript 建置,受到許多開發人員的喜愛。 {% cta https://github.com/mintlify/writer %} Star Mintlify ⭐️ {% endcta %} --- 6. [Replexica](https://github.com/replexica/replexica) - 用於 React 的 AI 支援的 i18n 工具包。 ------------------------------------------------------------------------------------ ![反射](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/htgshukxy927iy37ui33.png) 在地化方面的困難是真實存在的,因此人工智慧的幫助絕對是一個很酷的概念。 Replexica 是 React 的 i18n 工具包,可快速發布多語言應用程式。它不需要將文字提取到 JSON 檔案中,並使用 AI 支援的 API 進行內容處理。 它有以下兩個部分: 1. Replexica Compiler - React 的開源編譯器插件。 2. Replexica API - 雲端中的 i18n API,使用 LLM 執行翻譯。 (基於使用情況,它有免費套餐) 支援的一些 i18n 格式包括: 1. 無 JSON 的 Replexica 編譯器格式。 2. Markdown 內容的 .md 檔案。 3. 基於舊版 JSON 和 YAML 的格式。 當他們達到 500 星時,他們也在 DEV 上發布了官方公告。我是第一批讀者之一(少於 3 個反應)。 它們涵蓋了很多內容,因此您應該閱讀 Max 的[《We Got 500 Stars What Next》](https://dev.to/maxprilutskiy/we-got-500-github-stars-whats-next-2njc) 。 為了給出 Replexica 背後的總體思路,這是基本 Next.js 應用程式所需的唯一更改,以使其支援多語言。 開始使用以下 npm 指令。 ``` // install pnpm add replexica @replexica/react @replexica/compiler // login to Replexica API. pnpm replexica auth --login ``` 您可以這樣使用它。 ``` // next.config.mjs // Import Replexica Compiler import replexica from '@replexica/compiler'; /** @type {import('next').NextConfig} */ const nextConfig = {}; // Define Replexica configuration /** @type {import('@replexica/compiler').ReplexicaConfig} */ const replexicaConfig = { locale: { source: 'en', targets: ['es'], }, }; // Wrap Next.js config with Replexica Compiler export default replexica.next( replexicaConfig, nextConfig, ); ``` 您可以閱讀如何[開始使用](https://github.com/replexica/replexica/blob/main/getting-started.md)以及清楚記錄的有關[幕後使用內容的](https://github.com/replexica/replexica?tab=readme-ov-file#whats-under-the-hood)內容。 Replexica 編譯器支援 Next.js App Router,Replexica API 支援英文🇺🇸和西班牙文🇪🇸。他們計劃接下來發布 Next.js Pages Router + 法語🇫🇷語言支援! 他們在 GitHub 上擁有 740 多個 Star,並且基於 TypeScript 建置。您應該密切關注該專案以獲得進一步進展! {% cta https://github.com/replexica/replexica %} Star Replexica ⭐️ {% endcta %} --- 7. [Flowise](https://github.com/FlowiseAI/Flowise) - 拖放 UI 來建立您的客製化 LLM 流程。 --------------------------------------------------------------------------- ![弗洛伊薩伊](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/r5bp43nil764fhe4a05z.png) Flowise 是一款開源 UI 視覺化工具,用於建立客製化的 LLM 編排流程和 AI 代理程式。 開始使用以下 npm 指令。 ``` npm install -g flowise npx flowise start OR npx flowise start --FLOWISE_USERNAME=user --FLOWISE_PASSWORD=1234 ``` 這就是整合 API 的方式。 ``` import requests url = "/api/v1/prediction/:id" def query(payload): response = requests.post( url, json = payload ) return response.json() output = query({ question: "hello!" )} ``` ![整合](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ahk2ovjrpq1qk3r5pfot.png) 您可以閱讀[文件](https://docs.flowiseai.com/)。 ![流程化人工智慧](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/trkltpn5lk1y1pte0smd.png) 雲端主機不可用,因此您必須使用這些[說明](https://github.com/FlowiseAI/Flowise?tab=readme-ov-file#-self-host)自行託管。 讓我們探討一些用例: - 假設您有一個網站(可以是商店、電子商務網站或部落格),並且您希望廢棄該網站的所有相關連結,並讓法學碩士回答您網站上的任何問題。您可以按照此[逐步教學](https://docs.flowiseai.com/use-cases/web-scrape-qna)來了解如何實現相同的目標。 ![刮刀](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/e91sz2mga5wvc0x2hp2g.png) - 您還可以建立一個自訂工具,該工具將能夠呼叫 Webhook 端點並將必要的參數傳遞到 Webhook 主體中。請依照本[指南](https://docs.flowiseai.com/use-cases/webhook-tool)使用 Make.com 建立 Webhook 工作流程。 ![網路鉤子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ckyivo9dvue461jc9pv4.png) 還有許多其他用例,例如建立 SQL QnA 或與 API 互動。 FlowiseAI 在 GitHub 上擁有超過 27,500 個 Star,並擁有超過 10,000 個分叉,因此具有良好的整體比率。 {% cta https://github.com/FlowiseAI/Flowise %} 明星 Flowise ⭐️ {% endcta %} --- 8. [Hexo](https://github.com/hexojs/hexo) - 一個快速、簡單且功能強大的部落格框架。 --------------------------------------------------------------- ![六角形](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/6vos07fyydiupqqplo2s.png) 大多數開發人員更喜歡自己的博客,如果您也是如此。 Hexo 可能是你不知道的工具。 Hexo 支援許多功能,例如超快的生成速度,支援 GitHub Flavored Markdown 和大多數 Octopress 插件,提供對 GitHub Pages、Heroku 等的一命令部署,以及可實現無限擴展性的強大 API 和數百個主題和插件。 這意味著您可以用 Markdown(或其他標記語言)編寫帖子,Hexo 在幾秒鐘內生成具有漂亮主題的靜態檔案。 開始使用以下 npm 指令。 ``` npm install hexo-cli -g ``` 您可以這樣使用它。 ``` // Setup your blog hexo init blog // Start the server hexo server // Create a new post hexo new "Hello Hexo" ``` 您可以閱讀[文件](https://hexo.io/docs/),查看 Hexo 提供的所有[400 多個外掛程式](https://hexo.io/plugins/)和[主題集](https://hexo.io/themes/)。據我所知,這些外掛程式支援廣泛的用例,例如 Hexo 的 Ansible 部署器外掛程式。 您可以查看有關在[Hexo 上編寫和組織內容的](https://www.youtube.com/watch?v=AIqBubK6ZLc&t=6s)YouTube 教學。 Hexo 在 GitHub 上擁有超過 38,000 顆星,並被 GitHub 上超過 125,000 名開發者使用。它們位於`v7`版本中,解壓縮後大小為`629 kB` 。 {% cta https://github.com/hexojs/hexo %} Star Hexo ⭐️ {% endcta %} --- 9.[螢幕截圖到程式碼](https://github.com/abi/screenshot-to-code)- 放入螢幕截圖並將其轉換為乾淨的程式碼。 --------------------------------------------------------------------------- ![截圖到程式碼](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5akiyz5telxqqsj32ftu.png) 這個開源專案廣泛流行,但許多開發人員仍然不了解它。它可以幫助您以 10 倍的速度建立使用者介面。 這是一個簡單的工具,可以使用 AI 將螢幕截圖、模型和 Figma 設計轉換為乾淨、實用的程式碼。 該應用程式有一個 React/Vite 前端和一個 FastAPI 後端。如果您想使用 Claude Sonnet 或獲得實驗視訊支持,您將需要一個能夠存取 GPT-4 Vision API 的 OpenAI API 金鑰或一個 Anthropic 金鑰。您可以閱讀[指南](https://github.com/abi/screenshot-to-code?tab=readme-ov-file#-getting-started)來開始。 您可以在託管版本上[即時試用](https://screenshottocode.com/),並觀看 wiki 上提供的[一系列演示影片](https://github.com/abi/screenshot-to-code/wiki/Screen-Recording-to-Code)。 他們在 GitHub 上擁有超過 47k 顆星星,並支援許多技術堆疊,例如 React 和 Vue,以及不錯的 AI 模型,例如 GPT-4 Vision、Claude 3 Sonnet 和 DALL-E 3。 {% cta https://github.com/abi/screenshot-to-code %} 將螢幕截圖轉為程式碼 ⭐️ {% endcta %} --- 10. [Appsmith](https://github.com/appsmithorg/appsmith) - 建立管理面板、內部工具和儀表板的平台。 ----------------------------------------------------------------------------- ![應用史密斯](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rt7s0r3wz2leec83cl17.png) 管理面板和儀表板是任何軟體創意(在大多數情況下)的一些常見部分,我嘗試從頭開始建立它,這會帶來很多痛苦和不必要的辛苦工作。 您可能已經看到組織建立了內部應用程式,例如儀表板、資料庫 GUI、管理面板、批准應用程式、客戶支援儀表板等,以幫助其團隊執行日常操作。正如我所說,Appsmith 是一個開源工具,可以實現這些內部應用程式的快速開發。 首先,請觀看這個[YouTube 影片](https://www.youtube.com/watch?v=NnaJdA1A11s),該影片在 100 秒內解釋了 Appsmith。 {% 嵌入 https://www.youtube.com/watch?v=NnaJdA1A11s %} 他們提供拖放小部件來建立 UI。 您可以使用 45 多個可自訂的小工具在幾分鐘內建立漂亮的響應式 UI,而無需編寫一行 HTML/CSS。尋找[小部件的完整清單](https://www.appsmith.com/widgets)。 ![按鈕點擊小工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kqpnnslvsvjl4gifseon.png) ![驗證](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/489fly7tvknz2uv2mgei.png) Appsmith 幾乎可以在 GUI 上的小部件屬性、事件偵聽器、查詢和其他設定內的任何位置編寫 JavaScript 程式碼。 Appsmith 支援在`{{ }}`內編寫單行程式碼,並將括號之間編寫的任何內容解釋為 JavaScript 表達式。 ``` /*Filter the data array received from a query*/ {{ QueryName.data.filter((row) => row.id > 5 ) }} or {{ storeValue("userID", 42); console.log(appsmith.store.userID); showAlert("userID saved"); }} ``` 您需要使用立即呼叫函數表達式(IIFE)來編寫多行。 例如,無效程式碼和有效程式碼。 ``` // invalid code /*Call a query to fetch the results and filter the data*/ {{ const array = QueryName.data; const filterArray = array.filter((row) => row.id > 5); return filterArray; }} /* Check the selected option and return the value*/ {{ if (Dropdown.selectedOptionValue === "1") { return "Option 1"; } else { return "Option 2"; } }} // valid code /* Call a query and then manipulate its result */ {{ (function() { const array = QueryName.data; const filterArray = array.filter((row) => row.id > 5); return filterArray; })() }} /* Verify the selected option and return the value*/ {{ (function() { if (Dropdown.selectedOptionValue === "1") { return "Option 1"; } else { return "Option 2"; } })() }} ``` 您可以透過幾個簡單的步驟建立從簡單的 CRUD 應用程式到複雜的多步驟工作流程的任何內容: 1. 與資料庫或 API 整合。 Appsmith 支援最受歡迎的資料庫和 REST API。 2. 使用內建小工具建立您的應用程式佈局。 3. 在編輯器中的任何位置使用查詢和 JavaScript 來表達您的業務邏輯。 4. Appsmith 支援使用 Git 進行版本控制,以使用分支來協作建立應用程式來追蹤和回滾變更。部署應用程式並分享:) ![應用史密斯](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/yltcrmuzwdoydrwyqjpp.png) 您可以閱讀[文件](https://docs.appsmith.com/)和[操作指南](https://docs.appsmith.com/connect-data/how-to-guides),例如如何將其連接到本機資料來源或\[如何與第三方工具整合\](與第三方工具整合)。 您可以自行託管或使用雲端。他們還提供[20 多個模板](https://www.appsmith.com/templates),以便您可以快速入門。一些有用的是: - [維修訂單管理](https://www.appsmith.com/template/Maintenance-Order-Management) - [加密即時追蹤器](https://www.appsmith.com/template/crypto-live-tracker) - [內容管理系統](https://www.appsmith.com/template/content-management-system) - [WhatsApp 信使](https://www.appsmith.com/template/whatsapp-messenger) Appsmith 在 GitHub 上擁有超過 31,000 顆星,發布了 200 多個版本。 {% cta https://github.com/appsmithorg/appsmith %} Star Appsmith ⭐️ {% endcta %} --- 11. [BlockNote](https://github.com/TypeCellOS/BlockNote) - 基於區塊(Notion 樣式)且可擴充的富文本編輯器。 -------------------------------------------------------------------------------------- ![區塊註釋](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/eddx8cld0g492w3a8fjh.png) 人們常說,除非您正在學習新東西,否則不要重新發明輪子。 Blocknote 是開源的 Block 為基礎的 React 富文本編輯器。您可以輕鬆地將現代文字編輯體驗加入到您的應用程式中。 Blocknote 建構在 Prosemirror 和 Tiptap 之上。 它們有很多功能,如下所示。 ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/h9kd6xnkg9fa5j29frot.png) ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ezuz7ywh6vefixmpeyzk.png) 您可以輕鬆自訂內建 UI 元件,或建立自訂區塊、內聯內容和樣式。如果您想更進一步,您可以使用額外的 Prosemirror 或 TipTap 外掛程式來擴充核心編輯器。 其他庫雖然功能強大,但通常具有相當陡峭的學習曲線,並且要求您自訂編輯器的每個細節。這可能需要數月的專門工作。 相反,BlockNote 只需最少的設定即可提供出色的體驗,包括現成的動畫 UI。 開始使用以下 npm 指令。 ``` npm install @blocknote/core @blocknote/react ``` 您可以這樣使用它。透過`useCreateBlockNote`鉤子,我們可以建立一個新的編輯器實例,然後使用`theBlockNoteView`元件來渲染它。 `@blocknote/react/style.css`也被匯入來新增編輯器的預設樣式和 BlockNote 匯出的 Inter 字體(可選)。 ``` import "@blocknote/core/fonts/inter.css"; import { BlockNoteView, useCreateBlockNote } from "@blocknote/react"; import "@blocknote/react/style.css"; export default function App() { // Creates a new editor instance. const editor = useCreateBlockNote(); // Renders the editor instance using a React component. return <BlockNoteView editor={editor} />; } ``` 您可以閱讀可用的[文件](https://www.blocknotejs.org/docs)和[ui 元件](https://www.blocknotejs.org/docs/ui-components)。 您應該嘗試一下,特別是因為它包含廣泛的功能,例如「斜線」選單、流暢的動畫以及建立即時協作應用程式的潛力。 ![削減](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0i7ob8nrhpl7r70k6527.png) 斜線選單 ![即時協作](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/id22qol6y0838zgwad3y.png) 即時協作 ![格式](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/d8maems8tfhtehw9lkol.png) 格式選單 他們還提供了[20 多個範例](https://www.blocknotejs.org/examples)以及預覽和程式碼,您可以使用它們來快速跟進。 ![例子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4uillknk0ogkcvpula7b.png) Blocknote 在 GitHub 上擁有超過 5,000 顆星,並有超過 1,500 名開發者在使用。 {% cta https://github.com/TypeCellOS/BlockNote %} 星 BlockNote ⭐️ {% endcta %} --- 12. [CopilotKit](https://github.com/CopilotKit/CopilotKit) - 在數小時內為您的產品提供 AI Copilot。 ------------------------------------------------------------------------------------- ![副駕駛套件](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nzuxjfog2ldam3csrl62.png) 將 AI 功能整合到 React 中是很困難的,這就是 Copilot 的用武之地。一個簡單快速的解決方案,可將可投入生產的 Copilot 整合到任何產品中! 您可以使用兩個 React 元件將關鍵 AI 功能整合到 React 應用程式中。它們還提供內建(完全可自訂)Copilot 原生 UX 元件,例如`<CopilotKit />` 、 `<CopilotPopup />` 、 `<CopilotSidebar />` 、 `<CopilotTextarea />` 。 開始使用以下 npm 指令。 ``` npm i @copilotkit/react-core @copilotkit/react-ui ``` Copilot Portal 是 CopilotKit 提供的元件之一,CopilotKit 是一個應用程式內人工智慧聊天機器人,可查看目前應用狀態並在應用程式內採取操作。它透過插件與應用程式前端和後端以及第三方服務進行通訊。 這就是整合聊天機器人的方法。 `CopilotKit`必須包裝與 CopilotKit 互動的所有元件。建議您也開始使用`CopilotSidebar` (您可以稍後切換到不同的 UI 提供者)。 ``` "use client"; import { CopilotKit } from "@copilotkit/react-core"; import { CopilotSidebar } from "@copilotkit/react-ui"; import "@copilotkit/react-ui/styles.css"; export default function RootLayout({children}) { return ( <CopilotKit url="/path_to_copilotkit_endpoint/see_below"> <CopilotSidebar> {children} </CopilotSidebar> </CopilotKit> ); } ``` 您可以使用此[快速入門指南](https://docs.copilotkit.ai/getting-started/quickstart-backend)設定 Copilot 後端端點。 之後,您可以讓 Copilot 採取行動。您可以閱讀如何提供[外部上下文](https://docs.copilotkit.ai/getting-started/quickstart-chatbot#provide-context)。您可以使用`useMakeCopilotReadable`和`useMakeCopilotDocumentReadable`反應掛鉤來執行此操作。 ``` "use client"; import { useMakeCopilotActionable } from '@copilotkit/react-core'; // Let the copilot take action on behalf of the user. useMakeCopilotActionable( { name: "setEmployeesAsSelected", // no spaces allowed in the function name description: "Set the given employees as 'selected'", argumentAnnotations: [ { name: "employeeIds", type: "array", items: { type: "string" } description: "The IDs of employees to set as selected", required: true } ], implementation: async (employeeIds) => setEmployeesAsSelected(employeeIds), }, [] ); ``` 您可以閱讀[文件](https://docs.copilotkit.ai/getting-started/quickstart-textarea)並查看[演示影片](https://github.com/CopilotKit/CopilotKit?tab=readme-ov-file#demo)。 您可以輕鬆整合 Vercel AI SDK、OpenAI API、Langchain 和其他 LLM 供應商。您可以按照本[指南](https://docs.copilotkit.ai/getting-started/quickstart-chatbot)將聊天機器人整合到您的應用程式中。 基本概念是在幾分鐘內建立可用於基於 LLM 的應用程式的 AI 聊天機器人。 用例是巨大的,作為開發人員,我們絕對應該在下一個專案中嘗試使用 CopilotKit。 CopilotKit 在 GitHub 上擁有超過 4,200 個星星,發布了 200 多個版本,這意味著它們正在不斷改進。 {% cta https://github.com/CopilotKit/CopilotKit %} Star CopilotKit ⭐️ {% endcta %} --- 13.[自動完成](https://github.com/withfig/autocomplete)- IDE 風格的自動完成功能適用於您現有的終端和 shell。 ---------------------------------------------------------------------------------- ![自動完成](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/8i8vcidsa023jf8r9382.png) [Fig](https://fig.io/?ref=github_autocomplete)讓命令列對個人來說更容易,對團隊來說更具協作性。 他們最受歡迎的產品是自動完成。當您鍵入時,Fig 會在現有終端機中彈出子命令、選項和上下文相關的參數。 最好的部分是您也可以將 Fig 的自動完成功能用於您自己的工具。以下是建立私人完成的方法: ``` import { ai } from "@fig/autocomplete-generators" ... generators: [ ai({ // the prompt prompt: "Generate a git commit message", // Send any relevant local context. message: async ({ executeShellCommand }) => { return executeShellCommand("git diff") }, //Turn each newline into a suggestion (can specify instead a `postProcess1 function if more flexibility is required) splitOn: "\n", }) ] ``` 您可以閱讀[Fig.io/docs](https://fig.io/docs/getting-started)了解如何開始。 他們在 GitHub 上有 24k+ Stars,這對於經常使用 shell 或終端機的開發人員來說非常有用。 {% cta https://github.com/withfig/autocomplete %} 星狀自動完成 ⭐️ {% endcta %} --- 14. [Tooljet](https://github.com/ToolJet/ToolJet) - 用於建立業務應用程式的低程式碼平台。 ---------------------------------------------------------------------- ![工具噴射器](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/xhipvjl2wnthjccgrpij.png) 我們都建立前端,但它通常非常複雜並且涉及很多因素。這樣可以省去很多麻煩。 ToolJet 是一個開源低程式碼框架,可以用最少的工程工作來建置和部署內部工具。 ToolJet 的拖放式前端建構器可讓您在幾分鐘內建立複雜的響應式前端。 您可以整合各種資料來源,包括PostgreSQL、MongoDB、Elasticsearch等資料庫;具有 OpenAPI 規範和 OAuth2 支援的 API 端點; SaaS 工具,例如 Stripe、Slack、Google Sheets、Airtable 和 Notion;以及 S3、GCS 和 Minio 等物件儲存服務來取得和寫入資料。一切 :) 這就是 Tooljet 的工作原理。 ![工具噴射器](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/r6vv09z7ioma1ce2ttei.png) 您可以在 ToolJet 中開發多步驟工作流程以自動化業務流程。除了建置和自動化工作流程之外,ToolJet 還可以在您的應用程式中輕鬆整合這些工作流程。 ![工作流程](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/eh2vk3kih9fhck6okf67.png) 您可以閱讀此[快速入門指南](https://docs.tooljet.com/docs/getting-started/quickstart-guide),該指南向您展示如何使用 ToolJet 在幾分鐘內建立員工目錄應用程式。該應用程式將讓您透過漂亮的用戶介面追蹤和更新員工資訊。 查看可用[功能列表](https://github.com/ToolJet/ToolJet?tab=readme-ov-file#all-features),包括 45 多個內建響應式元件、50 多個資料來源等等。 您可以閱讀[文件](https://docs.tooljet.com/docs/)並查看[操作指南](https://docs.tooljet.com/docs/how-to/use-url-params-on-load)。 它們在 GitHub 上有 26k+ Stars,並且基於 JavaScript 建置。他們也獲得了 GitHub 的資助,從而建立了巨大的信任。 {% cta https://github.com/ToolJet/ToolJet %} Star ToolJet ⭐️ {% endcta %} --- 15. [Apitable](https://github.com/apitable/apitable) - 用於建立協作應用程式的 API 導向的低程式碼平台。 --------------------------------------------------------------------------------- ![有能力的](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/58syhvpb2fn6hhlyrtst.png) APITable 是一個面向 API 的低程式碼平台,用於建立協作應用程式,並表示它比所有其他 Airtable 開源替代品都要好。 有很多很酷的功能,例如: - 即時協作。 ![即時協作](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/58kpvpab2nj92421yvy3.gif) - 您可以產生自動表單。 ![形式](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0jo084gg0cd9xiud3nz3.gif) - 無限的跨錶連結。 ![交叉表](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/jnvb9sdp3uqrcn55hwug.gif) - API 第一個面板。 ![API第一個面板](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7u48ue4rl0q41rhh6bif.gif) - 強大的行/列功能。 ![行列](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/apxqwp84awdbj7cdw5yu.gif) 您可以閱讀完整的[功能清單](https://github.com/apitable/apitable?tab=readme-ov-file#-features)。 您可以嘗試[apitable](https://aitable.ai/)並在 apitable 的[live Gitpod demo](https://gitpod.io/#https://github.com/apitable/apitable)中查看該專案的演示。 您也可以閱讀[安裝指南](https://github.com/apitable/apitable?tab=readme-ov-file#installation),在本機或雲端運算環境中安裝 APITable。 {% cta https://github.com/apitable/apitable %} Star Apitable ⭐️ {% endcta %} --- 16. [n8n](https://github.com/n8n-io/n8n) - 工作流程自動化工具。 ----------------------------------------------------- ![n8n](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4pqsc84nhgj0b9dhfaxo.png) n8n 是一個可擴展的工作流程自動化工具。透過公平程式碼分發模型,n8n 將始終擁有可見的原始程式碼,可用於自託管,並允許您加入自訂函數、邏輯和應用程式。 每個開發人員都想使用的工具。自動化是生產力和簡單性的關鍵。 ![n8n](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rxnp57kw5szbpj6mfs1p.png) n8n 基於節點的方法使其具有高度通用性,使您能夠將任何事物連接到任何事物。 有[400 多個集成選項](https://n8n.io/integrations),這幾乎是瘋狂的! 您可以看到所有[安裝](https://docs.n8n.io/choose-n8n/)選項,包括 Docker、npm 和自架。 開始使用以下命令。 ``` npx n8n ``` 此命令將下載啟動 n8n 所需的所有內容。然後,您可以透過開啟`http://localhost:5678`來存取 n8n 並開始建置工作流程。 在 YouTube 上觀看此[快速入門影片](https://www.youtube.com/watch?v=1MwSoB0gnM4)! {% 嵌入 https://www.youtube.com/watch?v=1MwSoB0gnM4 %} 您可以閱讀[文件](https://docs.n8n.io/)並閱讀本[指南](https://docs.n8n.io/try-it-out/),以便根據您的需求快速開始。 他們還提供初學者和中級[課程,](https://docs.n8n.io/courses/)以便輕鬆學習。 他們在 GitHub 上有 39k+ Stars,並提供兩個包供整體使用。 {% cta https://github.com/n8n-io/n8n %} 明星 n8n ⭐️ {% endcta %} --- 17. [DOMPurify](https://github.com/cure53/DOMPurify) - 一個僅限 DOM、超快、超級容忍 XSS 的 HTML 清理程式。 ---------------------------------------------------------------------------------------- ![DOM純化](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/r846r2hmmw9d9wzvbocz.png) DOMPurify 是一款僅限 DOM、超快、超級容忍 XSS 的 HTML、MathML 和 SVG 清理工具。作為開發人員,我們的應用程式需要它來確保它們足夠安全。 DOMPurify 可以淨化 HTML 並防止 XSS 攻擊。 您可以向 DOMPurify 提供一個充滿髒 HTML 的字串,它將傳回一個包含乾淨 HTML 的字串(除非另有配置)。 DOMPurify 將刪除所有包含危險 HTML 的內容,從而防止 XSS 攻擊和其他惡意行為。這也太快了。 他們使用瀏覽器提供的技術並將其轉變為 XSS 過濾器。您的瀏覽器速度越快,DOMPurify 的速度就越快。 DOMPurify 使用 JavaScript 編寫,適用於所有現代瀏覽器(Safari (10+)、Opera (15+)、Edge、Firefox 和 Chrome - 以及幾乎所有使用 Blink、Gecko 或 WebKit 的其他瀏覽器)。它不會在 MSIE 或其他舊版瀏覽器上中斷。它根本什麼都不做。 開始使用以下 npm 指令。 ``` npm install dompurify npm install jsdom // or use the unminified development version <script type="text/javascript" src="src/purify.js"></script> ``` 您可以這樣使用它。 ``` const createDOMPurify = require('dompurify'); const { JSDOM } = require('jsdom'); const window = new JSDOM('').window; const DOMPurify = createDOMPurify(window); const clean = DOMPurify.sanitize('<b>hello there</b>'); ``` 如果您遇到問題,請參閱[文件](https://github.com/cure53/DOMPurify?tab=readme-ov-file#how-do-i-use-it)。他們已經記錄了使用腳本或在伺服器端執行它。 您可以看到一些 [純化樣品](https://github.com/cure53/DOMPurify?tab=readme-ov-file#some-purification-samples-please)並觀看[現場演示](https://cure53.de/purify)。 使用起來也非常簡單。 DOMPurify 於 2014 年 2 月啟動,同時版本已達 v3.1.0。 其中涉及到很多概念,我渴望探索它們。如果您有任何與此相關的令人興奮的事情,請告訴我。 我發現的另一個有用的替代方案是[validator.js](https://github.com/validatorjs/validator.js) 。 他們在 GitHub 上擁有超過 12,000 顆星,被超過 30 萬開發者使用,每週下載量超過 5,475,000 次,這使得他們非常可信。 {% cta https://github.com/cure53/DOMPurify %} 明星 DOMPurify ⭐️ {% endcta %} --- 18. [OpenDevin](https://github.com/OpenDevin/OpenDevin) - 更少的程式碼,更多的內容。 ----------------------------------------------------------------------- ![奧彭文](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4on63bb02g4x4ny8gtcn.png) ![奧彭文](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/l0yepod2rye2jk5r12dt.png) 這是一個開源專案,旨在複製 Devin,一名自主人工智慧軟體工程師,能夠執行複雜的工程任務並在軟體開發專案上與用戶積極協作。該計畫致力於透過開源社群的力量複製、增強和創新 Devin。 只是想讓你知道,這是在德文被介紹之前。 您可以閱讀帶有要求的[安裝說明](https://github.com/OpenDevin/OpenDevin?tab=readme-ov-file#installation)。 他們使用 LiteLLM,因此您可以使用任何基礎模型來執行 OpenDevin,包括 OpenAI、Claude 和 Gemini。 如果您想為 OpenDevin 做出貢獻,您可以查看 [演示](https://github.com/OpenDevin/OpenDevin/blob/main/README.md#opendevin-code-less-make-more)和[貢獻指南](https://github.com/OpenDevin/OpenDevin/blob/main/CONTRIBUTING.md)。 它在 GitHub 上擁有超過 10,700 個 Star,並且正在快速成長。 {% cta https://github.com/OpenDevin/OpenDevin %} 明星 OpenDevin ⭐️ {% endcta %} --- 19. [Amplification-](https://github.com/amplication/amplication)後端開發平台。 ----------------------------------------------------------------------- ![放大](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/w7yi3kvwrniredj4lp5r.png) 我想我們都同意,如果我們要達到標準,設定後端並從頭開始是很困難的。 我知道 Appwrite 和 Supabase 在功能方面要好得多,但每種情況都是獨特的,這可能會點擊而不是那些。 ![放大](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/d5wud5sef1lpwzi8zdq2.png) Amplication 旨在徹底改變可擴展且安全的 Node.js 應用程式的建立。 他們消除了重複的編碼任務,並提供可立即投入生產的基礎設施程式碼,這些程式碼根據您的規範精心定制,並遵循行業最佳實踐。 其用戶友好的介面促進了 API、資料模型、資料庫、身份驗證和授權的無縫整合。 Amplication 建立在靈活的、基於插件的架構之上,允許輕鬆定製程式碼並提供大量整合選項。 ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/q3lc27fgvk8yearir13z.png) ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4zgix42tplg9hwko3a7u.png) 您可以閱讀[文件](https://docs.amplication.com/)並查看可用的[社群插件](https://docs.amplication.com/plugins-list/)清單。 他們還提供了[逐步教程](https://docs.amplication.com/tutorials/#step-by-step-tutorials),以幫助您使用 Angular 或 React 建立應用程式。 Amplification 在 GitHub 上擁有超過 13k 顆星,發布了 170 多個版本,因此它們不斷發展。 {% cta https://github.com/amplication/amplication %} 星狀放大 ⭐️ {% endcta %} --- 20. [Embla 旋轉木馬](https://github.com/davidjerleke/embla-carousel)-。 ------------------------------------------------------------------ ![Embla 旋轉木馬](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/aj2expoo15t6xhgcm3hi.png) 我們都在應用程式中使用輪播,有時會切換到網格佈局,因為輪播並不總是好看,但這會改變您對輪播的看法。 我之所以了解 Embla Carousel,是因為 Shadcn/ui 在他們的 UI 系統中使用了它。 Embla Carousel 是一個簡單的輪播庫,具有出色的流暢運動和出色的滑動精度。它與庫無關、無依賴性且 100% 開源。 如果您不確定,我建議您查看[基本的實例](https://www.embla-carousel.com/examples/predefined/)。 ![例子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/paqu3ozlvhk5km5746pe.png) ![例子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/8qxfvmn83et836zon4ua.png) ![例子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/abukp6j29gsaade7eci8.png) ![例子](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/locv2kqksvpl0ha8a9te.png) 我最喜歡的是視差,它可以提供非常酷且平滑的過渡。 它們支援 CDN、react、Vue、Svelte 和 Solid。 開始使用以下 npm 指令 (react)。 ``` npm install embla-carousel-react --save ``` 您可以這樣使用它。 Embla Carousel 提供了方便的 useEmblaCarousel 鉤子,用於與 React 無縫整合。最小的設定需要一個溢出包裝器和一個滾動容器。 `useEmblaCarousel`掛鉤將 Embla Carousel 選項作為第一個參數。您還需要使用 useEffect 存取 API ``` import React, { useEffect } from 'react' import useEmblaCarousel from 'embla-carousel-react' export function EmblaCarousel() { const [emblaRef, emblaApi] = useEmblaCarousel({ loop: false }) useEffect(() => { if (emblaApi) { console.log(emblaApi.slideNodes()) // Access API } }, [emblaApi]) return ( <div className="embla" ref={emblaRef}> <div className="embla__container"> <div className="embla__slide">Slide 1</div> <div className="embla__slide">Slide 2</div> <div className="embla__slide">Slide 3</div> </div> </div> ) } ``` 他們還提供了一組插件,您可以加入它們以實現自動播放等額外功能。 ``` npm install embla-carousel-autoplay --save ``` ``` import React, { useEffect } from 'react' import useEmblaCarousel from 'embla-carousel-react' import Autoplay from 'embla-carousel-autoplay' export function EmblaCarousel() { const [emblaRef] = useEmblaCarousel({ loop: false }, [Autoplay()]) return ( <div className="embla" ref={emblaRef}> <div className="embla__container"> <div className="embla__slide">Slide 1</div> <div className="embla__slide">Slide 2</div> <div className="embla__slide">Slide 3</div> </div> </div> ) } ``` 尋找[插件的完整列表](https://www.embla-carousel.com/plugins/),包括自動滾動和滾輪手勢。 您可以閱讀有關如何實現不同部分(例如斷點或上一個/下一個按鈕)的[文件](https://www.embla-carousel.com/get-started/)和[指南](https://www.embla-carousel.com/guides/)。 最讓我驚訝的部分是,您可以使用他們的[生成器](https://www.embla-carousel.com/examples/generator/)使用您自己的一組選項來產生自訂輪播。 ![發電機](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5wlq7l44bwl681644xf3.png) ![發電機](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/2r1y3kr926h87clbqosw.png) 它們在 GitHub 上擁有 4.9K 顆星,並被超過 26000 名開發人員使用。如果我必須使用一個,我肯定會使用這個。 {% cta repo %} 明星名稱 ⭐️ {% endcta %} --- [21.Documenso](https://github.com/documenso/documenso) - 開源 DocuSign 替代方案。 -------------------------------------------------------------------------- ![文獻](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/cttvudzx02wqsu04qt8v.gif) 如果您從事自由職業並需要簽署協議,這是最佳選擇。我們不應該浪費時間,而應該專注於重要的事情。 以數位方式簽署文件應該既快速又簡單,並且應該成為全球簽署的每個文件的最佳實踐。 如今,這在技術上相當簡單,但它也為每個簽名引入了一個新方:簽名工具提供者。 此專案的技術堆疊包括 TypeScript、Next.js、Prisma、Tailwind CSS、shadcn/ui、NextAuth.js、react-email、tRPC、@documenso/pdf-sign、React-PDF、PDF-Lib、Stripe 和韋爾塞爾。 ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ziz58jqi2qtl6p6sx62w.png) ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/f8zrln5zlywkb6k10n09.png) 免費套餐可讓您每月簽署 10 份文件,這已經足夠了。 您可以閱讀本文以了解如何[設定專案](https://github.com/documenso/documenso?tab=readme-ov-file#developer-setup)。 您可以閱讀[文件](https://github.com/documenso/documenso?tab=readme-ov-file#developer-quickstart)。 我知道這不是一個非常廣泛的用例,但您仍然可以從程式碼中學習,因此這始終是一個優點。 他們在 GitHub 上擁有超過 5800 顆星,並且發布了`v1.5`版本。 不是很流行但非常有用。 {% cta https://github.com/documenso/documenso %} 明星 documenso ⭐️ {% endcta %} --- 哇! 這花了我很長很長的時間來寫。我希望你喜歡它。 我知道人工智慧工具有時太多了,但我們應該使用它們來讓我們的工作更輕鬆。我的意思是,這就是我們所做的正確的事情,讓生活變得更輕鬆。 我嘗試涵蓋廣泛的工具。 不管怎樣,請讓我們知道您的想法以及您計劃在您的工作流程中使用這些工具嗎? 祝你有美好的一天!直到下一次。 我建立了很多技術內容,因此如果您能在 Twitter 上關注我來支持我,我將不勝感激。 |如果你喜歡這類東西, 請關注我以了解更多:) | [![用戶名 Anmol_Codes 的 Twitter 個人資料](https://img.shields.io/badge/Twitter-d5d5d5?style=for-the-badge&logo=x&logoColor=0A0209)](https://twitter.com/Anmol_Codes) [![用戶名 Anmol-Baranwal 的 GitHub 個人資料](https://img.shields.io/badge/github-181717?style=for-the-badge&logo=github&logoColor=white)](https://github.com/Anmol-Baranwal) [![用戶名 Anmol-Baranwal 的 LinkedIn 個人資料](https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/Anmol-Baranwal/) | |------------|----------| 關注 Taipy 以了解更多此類內容。 {% 嵌入 https://dev.to/taipy %} --- 原文出處:https://dev.to/taipy/21-tools-to-take-your-dev-skills-to-the-moon-53mf

使用 AI-copilot(Next.js、gpt4、LangChain 和 CopilotKit)建立電子表格應用程式

**長話短說** -------- 在本文中,您將學習如何建立人工智慧驅動的電子表格應用程式,該應用程式允許您使用簡單的英語命令執行各種會計功能並輕鬆與資料互動。 我們將介紹如何: - 使用 Next.js 建立 Web 應用程式, - 使用 React Spreadsheet 建立電子表格應用程式,以及 - 使用 CopilotKit 將 AI 整合到軟體應用程式中。 - 讓電子表格更容易使用、更有趣 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ruxylrd07dga5ngw98np.gif) --- CopilotKit:建構應用內人工智慧副駕駛的框架 ========================== CopilotKit是一個[開源的AI副駕駛平台](https://github.com/CopilotKit/CopilotKit)。我們可以輕鬆地將強大的人工智慧整合到您的 React 應用程式中。 建造: - ChatBot:上下文感知的應用內聊天機器人,可以在應用程式內執行操作 💬 - CopilotTextArea:人工智慧驅動的文字字段,具有上下文感知自動完成和插入功能📝 - 聯合代理:應用程式內人工智慧代理,可以與您的應用程式和使用者互動🤖 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/x3us3vc140aun0dvrdof.gif) {% cta https://github.com/CopilotKit/CopilotKit %} Star CopilotKit ⭐️ {% endcta %} (請原諒 AI 的拼字錯誤並給 CopilotKit 加上星號:) 現在回到文章! --- 先決條件 ---- 要完全理解本教程,您需要對 React 或 Next.js 有基本的了解。 以下是建立人工智慧驅動的電子表格應用程式所需的工具: - [React Spreadsheet](https://github.com/iddan/react-spreadsheet) - 一個簡單的包,使我們能夠在 React 應用程式中加入電子表格。 - [OpenAI API](https://platform.openai.com/api-keys) - 提供 API 金鑰,使我們能夠使用 ChatGPT 模型執行各種任務。 - [Tavily AI](https://tavily.com/) - 一個搜尋引擎,使人工智慧代理能夠在應用程式中進行研究並存取即時知識。 - [CopilotKit](https://github.com/CopilotKit) - 一個開源副駕駛框架,用於建立自訂 AI 聊天機器人、應用程式內 AI 代理程式和文字區域。 專案設定和套件安裝 --------- 首先,透過在終端機中執行以下程式碼片段來建立 Next.js 應用程式: ``` npx create-next-app spreadsheet-app ``` 選擇您首選的配置設定。在本教學中,我們將使用 TypeScript 和 Next.js App Router。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/f2zg8z22tdgmlv4wmfil.png) 接下來,安裝[OpenAI 函式庫](https://platform.openai.com/docs/introduction)、 [Heroicons](https://www.npmjs.com/package/@heroicons/react)和[React Spreadsheet](https://github.com/iddan/react-spreadsheet)套件及其相依性: ``` npm install openai react-spreadsheet scheduler @heroicons/react ``` 最後,安裝 CopilotKit 軟體套件。這些套件使我們能夠從 React 狀態檢索資料並將 AI copilot 新增至應用程式。 ``` npm install @copilotkit/react-ui @copilotkit/react-textarea @copilotkit/react-core @copilotkit/backend ``` 恭喜!您現在已準備好建立應用程式。 --- 建立電子表格應用程式 ---------- 在本節中,我將引導您使用 React Spreadsheet 建立電子表格應用程式。 該應用程式分為兩個元件: `Sidebar`和`SingleSpreadsheet` 。 要設定這些元件,請導航至 Next.js 應用程式資料夾並建立一個包含以下檔案的`components`資料夾: ``` cd app mkdir components && cd components touch Sidebar.tsx SingleSpreadsheet.tsx ``` ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/bd9crph3qdenb2eikfoh.png) 將新建立的元件匯入到**`app/page.tsx`**檔案中。 ``` "use client"; import React, { useState } from "react"; //👇🏻 import the components import { SpreadsheetData } from "./types"; import Sidebar from "./components/Sidebar"; import SingleSpreadsheet from "./components/SingleSpreadsheet"; const Main = () => { return ( <div className='flex'> <p>Hello world</p> </div> ); }; export default Main; ``` 接下來,建立將包含電子表格資料的 React 狀態,並將它們作為 props 傳遞到元件中。 ``` const Main = () => { //👇🏻 holds the title and data within a spreadsheet const [spreadsheets, setSpreadsheets] = React.useState<SpreadsheetData[]>([ { title: "Spreadsheet 1", data: [ [{ value: "" }, { value: "" }, { value: "" }], [{ value: "" }, { value: "" }, { value: "" }], [{ value: "" }, { value: "" }, { value: "" }], ], }, ]); //👇🏻 represents the index of a spreadsheet const [selectedSpreadsheetIndex, setSelectedSpreadsheetIndex] = useState(0); return ( <div className='flex'> <Sidebar spreadsheets={spreadsheets} selectedSpreadsheetIndex={selectedSpreadsheetIndex} setSelectedSpreadsheetIndex={setSelectedSpreadsheetIndex} /> <SingleSpreadsheet spreadsheet={spreadsheets[selectedSpreadsheetIndex]} setSpreadsheet={(spreadsheet) => { setSpreadsheets((prev) => { console.log("setSpreadsheet", spreadsheet); const newSpreadsheets = [...prev]; newSpreadsheets[selectedSpreadsheetIndex] = spreadsheet; return newSpreadsheets; }); }} /> </div> ); }; ``` 此程式碼片段建立了 React 狀態,用於保存電子表格資料及其索引,並將它們作為 props 傳遞到元件中。 `Sidebar`元件接受所有可用的電子表格, `SingleSpreadsheet`元件接收所有電子表格,包括更新電子表格資料的`setSpreadsheet`函數。 將下面的程式碼片段複製到`Sidebar.tsx`檔案中。它顯示應用程式中的所有電子表格,並允許使用者在它們之間進行切換。 ``` import React from "react"; import { SpreadsheetData } from "../types"; interface SidebarProps { spreadsheets: SpreadsheetData[]; selectedSpreadsheetIndex: number; setSelectedSpreadsheetIndex: (index: number) => void; } const Sidebar = ({ spreadsheets, selectedSpreadsheetIndex, setSelectedSpreadsheetIndex, }: SidebarProps) => { return ( <div className='w-64 h-screen bg-gray-800 text-white overflow-auto p-5'> <ul> {spreadsheets.map((spreadsheet, index) => ( <li key={index} className={`mb-4 cursor-pointer ${ index === selectedSpreadsheetIndex ? "ring-2 ring-blue-500 ring-inset p-3 rounded-lg" : "p-3" }`} onClick={() => setSelectedSpreadsheetIndex(index)} > {spreadsheet.title} </li> ))} </ul> </div> ); }; export default Sidebar; ``` ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/c36qccuwa0knqokag5mk.gif) 更新`SingleSpreadsheet.tsx`文件,如下所示: ``` import React from "react"; import Spreadsheet from "react-spreadsheet"; import { SpreadsheetData, SpreadsheetRow } from "../types"; interface MainAreaProps { spreadsheet: SpreadsheetData; setSpreadsheet: (spreadsheet: SpreadsheetData) => void; } //👇🏻 adds a new row to the spreadsheet const addRow = () => { const numberOfColumns = spreadsheet.rows[0].length; const newRow: SpreadsheetRow = []; for (let i = 0; i < numberOfColumns; i++) { newRow.push({ value: "" }); } setSpreadsheet({ ...spreadsheet, rows: [...spreadsheet.rows, newRow], }); }; //👇🏻 adds a new column to the spreadsheet const addColumn = () => { const spreadsheetData = [...spreadsheet.data]; for (let i = 0; i < spreadsheet.data.length; i++) { spreadsheet.data[i].push({ value: "" }); } setSpreadsheet({ ...spreadsheet, data: spreadsheetData, }); }; const SingleSpreadsheet = ({ spreadsheet, setSpreadsheet }: MainAreaProps) => { return ( <div className='flex-1 overflow-auto p-5'> {/** -- Spreadsheet title ---*/} <div className='flex items-start'> {/** -- Spreadsheet rows and columns---*/} {/** -- Add column button ---*/} </div> {/** -- Add row button ---*/} </div> ); }; export default SingleSpreadsheet; ``` - 從上面的程式碼片段來看, ``` - The `SingleSpreadsheet.tsx` file includes the addRow and addColumn functions. ``` ``` - The `addRow` function calculates the current number of rows, adds a new row, and updates the spreadsheet accordingly. ``` ``` - Similarly, the `addColumn` function adds a new column to the spreadsheet. ``` ``` - The `SingleSpreadsheet` component renders placeholders for the user interface elements. ``` 更新`SingleSpreadsheet`元件以呈現電子表格標題、其資料以及新增行和列按鈕。 ``` return ( <div className='flex-1 overflow-auto p-5'> {/** -- Spreadsheet title ---*/} <input type='text' value={spreadsheet.title} className='w-full p-2 mb-5 text-center text-2xl font-bold outline-none bg-transparent' onChange={(e) => setSpreadsheet({ ...spreadsheet, title: e.target.value }) } /> {/** -- Spreadsheet rows and columns---*/} <div className='flex items-start'> <Spreadsheet data={spreadsheet.data} onChange={(data) => { console.log("data", data); setSpreadsheet({ ...spreadsheet, data: data as any }); }} /> {/** -- Add column button ---*/} <button className='bg-blue-500 text-white rounded-lg ml-6 w-8 h-8 mt-0.5' onClick={addColumn} > + </button> </div> {/** -- Add row button ---*/} <button className='bg-blue-500 text-white rounded-lg w-8 h-8 mt-5 ' onClick={addRow} > + </button> </div> ); ``` 為了確保一切按預期工作,請在`app`資料夾中建立一個`types.ts`文件,其中包含應用程式中聲明的所有靜態類型。 ``` export interface Cell { value: string; } export type SpreadsheetRow = Cell[]; export interface SpreadsheetData { title: string; rows: SpreadsheetRow[]; } ``` 恭喜! 🎉 您的電子表格應用程式應該可以完美執行。在接下來的部分中,您將了解如何新增 AI 副駕駛,以使用 CopilotKit 自動執行各種任務。 --- 使用 CopilotKit 改進應用程式功能 ---------------------- 在這裡,您將學習如何將 AI 副駕駛加入到電子表格應用程式,以使用 CopilotKit 自動執行複雜的操作。 CopilotKit 提供前端和[後端](https://docs.copilotkit.ai/getting-started/quickstart-backend)套件。它們使您能夠插入 React 狀態並使用 AI 代理在後端處理應用程式資料。 首先,我們將 CopilotKit React 元件新增到應用程式前端。 ### 將 CopilotKit 加入前端 在`app/page.tsx`中,將以下程式碼片段加入`Main`元件的頂部。 ``` import "@copilotkit/react-ui/styles.css"; import { CopilotKit } from "@copilotkit/react-core"; import { CopilotSidebar } from "@copilotkit/react-ui"; import { INSTRUCTIONS } from "./instructions"; const HomePage = () => { return ( <CopilotKit url='/api/copilotkit'> <CopilotSidebar instructions={INSTRUCTIONS} labels={{ initial: "Welcome to the spreadsheet app! How can I help you?", }} defaultOpen={true} clickOutsideToClose={false} > <Main /> </CopilotSidebar> </CopilotKit> ); }; const Main = () => { //--- Main component // }; export default HomePage; ``` - 從上面的程式碼片段來看, ``` - I imported the CopilotKit, its sidebar component, and CSS file to use its frontend components within the application. ``` ``` - The [CopilotKit component](https://docs.copilotkit.ai/reference/CopilotKit) accepts a `url` prop that represents the API server route where CopilotKit will be configured. ``` ``` - The Copilot component also renders the [CopilotSidebar component](https://docs.copilotkit.ai/reference/CopilotSidebar) , allowing users to provide custom instructions to the AI copilot within the application. ``` ``` - Lastly, you can export the `HomePage` component containing the `CopilotSidebar` and the `Main` components. ``` 從上面的程式碼片段中,您會注意到`CopilotSidebar`元件有一個`instructions`屬性。此屬性使您能夠為 CopilotKit 提供額外的上下文或指導。 因此,在`app`資料夾中建立`instructions.ts`檔案並將這些[命令](https://github.com/CopilotKit/spreadsheet-demo/blob/main/src/app/instructions.ts)複製到該檔案中。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/whs8k2ly9as7j4wn6h5o.png) 接下來,您需要將 CopilotKit 插入應用程式的狀態以存取應用程式的資料。為了實現這一點,CopilotKit 提供了兩個鉤子: [useCopilotAction](https://docs.copilotkit.ai/reference/useCopilotAction)和[useMakeCopilotReadable](https://docs.copilotkit.ai/reference/useMakeCopilotReadable) 。 [useCopilotAction](https://docs.copilotkit.ai/reference/useCopilotAction)掛鉤可讓您定義 CopilotKit 執行的動作。它接受包含以下參數的物件: - `name` - 操作的名稱。 - `description` - 操作的描述。 - `parameters` - 包含所需參數清單的陣列。 - `render` - 預設的自訂函數或字串。 - `handler` - 由操作觸發的可執行函數。 ``` useCopilotAction({ name: "sayHello", description: "Say hello to someone.", parameters: [ { name: "name", type: "string", description: "name of the person to say greet", }, ], render: "Process greeting message...", handler: async ({ name }) => { alert(`Hello, ${name}!`); }, }); ``` [useMakeCopilotReadable](https://docs.copilotkit.ai/reference/useMakeCopilotReadable)掛鉤向 CopilotKit 提供應用程式狀態。 ``` import { useMakeCopilotReadable } from "@copilotkit/react-core"; const appState = ...; useMakeCopilotReadable(JSON.stringify(appState)); ``` 現在,讓我們回到電子表格應用程式。在`SingleSpreadsheet`元件中,將應用程式狀態傳遞到 CopilotKit 中,如下所示。 ``` import { useCopilotAction, useMakeCopilotReadable, } from "@copilotkit/react-core"; const SingleSpreadsheet = ({ spreadsheet, setSpreadsheet }: MainAreaProps) => { //👇🏻 hook for providing the application state useMakeCopilotReadable( "This is the current spreadsheet: " + JSON.stringify(spreadsheet) ); // --- other lines of code }; ``` 接下來,您需要在`SingleSpreadsheet`元件中新增兩個操作,該元件在使用者更新電子表格資料並使用 CopilotKit 新增資料行時執行。 在繼續之前,請在`app`資料夾中建立一個包含`canonicalSpreadsheetData.ts`檔案的`utils`資料夾。 ``` cd app mkdir utils && cd utils touch canonicalSpreadsheetData.ts ``` 將下面的程式碼片段複製到檔案中。它接受對電子表格所做的更新,並將其轉換為電子表格中資料行所需的格式。 ``` import { SpreadsheetRow } from "../types" export interface RowLike { cells: CellLike[] | undefined; } export interface CellLike { value: string; } export function canonicalSpreadsheetData( rows: RowLike[] | undefined ): SpreadsheetRow[] { const canonicalRows: SpreadsheetRow[] = []; for (const row of rows || []) { const canonicalRow: SpreadsheetRow = []; for (const cell of row.cells || []) { canonicalRow.push({value: cell.value}); } canonicalRows.push(canonicalRow); } return canonicalRows; } ``` 現在,讓我們使用`SingleSpreadsheet`元件中的`useCopilotAction`掛鉤建立操作。複製下面的第一個操作: ``` import { canonicalSpreadsheetData } from "../utils/canonicalSpreadsheetData"; import { PreviewSpreadsheetChanges } from "./PreviewSpreadsheetChanges"; import { SpreadsheetData, SpreadsheetRow } from "../types"; import { useCopilotAction } from "@copilotkit/react-core"; useCopilotAction({ name: "suggestSpreadsheetOverride", description: "Suggest an override of the current spreadsheet", parameters: [ { name: "rows", type: "object[]", description: "The rows of the spreadsheet", attributes: [ { name: "cells", type: "object[]", description: "The cells of the row", attributes: [ { name: "value", type: "string", description: "The value of the cell", }, ], }, ], }, { name: "title", type: "string", description: "The title of the spreadsheet", required: false, }, ], render: (props) => { const { rows } = props.args const newRows = canonicalSpreadsheetData(rows); return ( <PreviewSpreadsheetChanges preCommitTitle="Replace contents" postCommitTitle="Changes committed" newRows={newRows} commit={(rows) => { const updatedSpreadsheet: SpreadsheetData = { title: spreadsheet.title, rows: rows, }; setSpreadsheet(updatedSpreadsheet); }} /> ) }, handler: ({ rows, title }) => { // Do nothing. // The preview component will optionally handle committing the changes. }, }); ``` 上面的程式碼片段執行使用者的任務並使用 CopilotKit 產生 UI 功能顯示結果預覽。 `suggestSpreadsheetOverride`操作傳回一個自訂元件 ( `PreviewSpreadsheetChanges` ),該元件接受以下內容為 props: - 要新增到電子表格的新資料行, - 一些文字 - `preCommitTitle`和`postCommitTitle` ,以及 - 更新電子表格的`commit`函數。 您很快就會學會如何使用它們。 在元件資料夾中建立`PreviewSpreadsheetChanges`元件,並將下列程式碼片段複製到檔案中: ``` import { CheckCircleIcon } from '@heroicons/react/20/solid' import { SpreadsheetRow } from '../types'; import { useState } from 'react'; import Spreadsheet from 'react-spreadsheet'; export interface PreviewSpreadsheetChanges { preCommitTitle: string; postCommitTitle: string; newRows: SpreadsheetRow[]; commit: (rows: SpreadsheetRow[]) => void; } export function PreviewSpreadsheetChanges(props: PreviewSpreadsheetChanges) { const [changesCommitted, setChangesCommitted] = useState(false); const commitChangesButton = () => { return ( <button className="inline-flex items-center gap-x-2 rounded-md bg-indigo-600 px-3.5 py-2.5 text-sm font-semibold text-white shadow-sm hover:bg-indigo-500 focus-visible:outline focus-visible:outline-2 focus-visible:outline-offset-2 focus-visible:outline-indigo-600" onClick={() => { props.commit(props.newRows); setChangesCommitted(true); }} > {props.preCommitTitle} </button> ); } const changesCommittedButtonPlaceholder = () => { return ( <button className=" inline-flex items-center gap-x-2 rounded-md bg-gray-100 px-3.5 py-2.5 text-sm font-semibold text-green-600 shadow-sm cursor-not-allowed" disabled > {props.postCommitTitle} <CheckCircleIcon className="-mr-0.5 h-5 w-5" aria-hidden="true" /> </button> ); } return ( <div className="flex flex-col"> <Spreadsheet data={props.newRows} /> <div className="mt-5"> {changesCommitted ? changesCommittedButtonPlaceholder() : commitChangesButton() } </div> </div> ); } ``` `PreviewSpreadsheetChanges`元件傳回一個電子表格,其中包含從請求產生的資料和一個按鈕(帶有`preCommitTitle`文字),該按鈕允許您將這些變更提交到主電子表格表(透過觸發`commit`函數)。這可確保您在將結果新增至電子表格之前對結果感到滿意。 將下面的第二個操作加入到`SingleSpreadsheet`元件。 ``` useCopilotAction({ name: "appendToSpreadsheet", description: "Append rows to the current spreadsheet", parameters: [ { name: "rows", type: "object[]", description: "The new rows of the spreadsheet", attributes: [ { name: "cells", type: "object[]", description: "The cells of the row", attributes: [ { name: "value", type: "string", description: "The value of the cell", }, ], }, ], }, ], render: (props) => { const status = props.status; const { rows } = props.args const newRows = canonicalSpreadsheetData(rows); return ( <div> <p>Status: {status}</p> <Spreadsheet data={newRows} /> </div> ) }, handler: ({ rows }) => { const canonicalRows = canonicalSpreadsheetData(rows); const updatedSpreadsheet: SpreadsheetData = { title: spreadsheet.title, rows: [...spreadsheet.rows, ...canonicalRows], }; setSpreadsheet(updatedSpreadsheet); }, }); ``` `appendToSpreadsheet`操作透過在電子表格中新增資料行來更新電子表格。 以下是操作的簡短示範: \[https://www.youtube.com/watch?v=kGQ9xl5mSoQ\] 最後,在`Main`元件中新增一個操作,以便在使用者提供指令時建立一個新的電子表格。 ``` useCopilotAction({ name: "createSpreadsheet", description: "Create a new spreadsheet", parameters: [ { name: "rows", type: "object[]", description: "The rows of the spreadsheet", attributes: [ { name: "cells", type: "object[]", description: "The cells of the row", attributes: [ { name: "value", type: "string", description: "The value of the cell", }, ], }, ], }, { name: "title", type: "string", description: "The title of the spreadsheet", }, ], render: (props) => { const { rows, title } = props.args; const newRows = canonicalSpreadsheetData(rows); return ( <PreviewSpreadsheetChanges preCommitTitle="Create spreadsheet" postCommitTitle="Spreadsheet created" newRows={newRows} commit={ (rows) => { const newSpreadsheet: SpreadsheetData = { title: title || "Untitled Spreadsheet", rows: rows, }; setSpreadsheets((prev) => [...prev, newSpreadsheet]); setSelectedSpreadsheetIndex(spreadsheets.length); }} /> ); }, handler: ({ rows, title }) => { // Do nothing. // The preview component will optionally handle committing the changes. }, }); ``` 恭喜!您已成功為此應用程式建立所需的操作。現在,讓我們將應用程式連接到 Copilotkit 後端。 ### 將 Tavily AI 和 OpenAI 加入到 CopilotKit 在本教程的開頭,我向您介紹了[Tavily AI](https://tavily.com/) (一個為 AI 代理提供知識的搜尋引擎)和 OpenAI(一個使我們能夠存取[GPT-4 AI 模型的](https://openai.com/gpt-4)庫)。 在本部分中,您將了解如何取得 Tavily 和 OpenAI API 金鑰並將它們整合到 CopilotKit 中以建立高級智慧應用程式。 造訪[Tavily AI 網站](https://app.tavily.com/sign-in),建立一個帳戶,然後將您的 API 金鑰複製到您專案的`.env.local`檔案中。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/w8shpxr5hh9r9kggk1jv.png) 接下來,導覽至[OpenAI 開發者平台](https://platform.openai.com/api-keys),建立 API 金鑰,並將其複製到`.env.local`檔案中。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/f4ugtobr70wg6z6ru3cj.png) 以下是`.env.local`檔案的預覽,其中包括 API 金鑰並指定要使用的 OpenAI 模型。請注意,存取 GPT-4 模型需要[訂閱 ChatGPT Plus](https://openai.com/chatgpt/pricing) 。 ``` TAVILY_API_KEY=<your_API_key> OPENAI_MODEL=gpt-4-1106-preview OPENAI_API_KEY=<your_API_key> ``` 回到我們的應用程式,您需要為 Copilot 建立 API 路由。因此,建立一個包含`route.ts`的`api/copilotkit`資料夾並新增一個`tavily.ts`檔案。 ``` cd app mkdir api && cd api mkdir copilotkit && cd copilotkit touch route.ts tavily.ts ``` 在`tavily.ts`檔案中建立一個函數,該函數接受使用者的查詢,使用 Tavily Search API 對查詢進行研究,並使用[OpenAI GPT-4 模型](https://openai.com/gpt-4)總結結果。 ``` import OpenAI from "openai"; export async function research(query: string) { //👇🏻 sends the request to the Tavily Search API const response = await fetch("https://api.tavily.com/search", { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify({ api_key: process.env.TAVILY_API_KEY, query, search_depth: "basic", include_answer: true, include_images: false, include_raw_content: false, max_results: 20, }), }); //👇🏻 the response const responseJson = await response.json(); const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY! }); //👇🏻 passes the response into the OpenAI GPT-4 model const completion = await openai.chat.completions.create({ messages: [ { role: "system", content: `Summarize the following JSON to answer the research query \`"${query}"\`: ${JSON.stringify( responseJson )} in plain English.`, }, ], model: process.env.OPENAI_MODEL, }); //👇🏻 returns the result return completion.choices[0].message.content; } ``` 最後,您可以透過將使用者的查詢傳遞到函數中並向 CopilotKit 提供其回應來執行`route.ts`檔案中的`research`函數。 ``` import { CopilotBackend, OpenAIAdapter } from "@copilotkit/backend"; import { Action } from "@copilotkit/shared"; import { research } from "./tavily"; //👇🏻 carries out a research on the user's query const researchAction: Action<any> = { name: "research", description: "Call this function to conduct research on a certain query.", parameters: [ { name: "query", type: "string", description: "The query for doing research. 5 characters or longer. Might be multiple words", }, ], handler: async ({ query }) => { console.log("Research query: ", query); const result = await research(query); console.log("Research result: ", result); return result; }, }; export async function POST(req: Request): Promise<Response> { const actions: Action<any>[] = []; if (process.env.TAVILY_API_KEY!) { actions.push(researchAction); } const copilotKit = new CopilotBackend({ actions: actions, }); const openaiModel = process.env.OPENAI_MODEL; return copilotKit.response(req, new OpenAIAdapter({ model: openaiModel })); } ``` 恭喜!您已完成本教學的專案。 結論 -- [CopilotKit](https://copilotkit.ai/)是一款令人難以置信的工具,可讓您在幾分鐘內將 AI Copilot 加入到您的產品中。無論您是對人工智慧聊天機器人和助理感興趣,還是對複雜任務的自動化感興趣,CopilotKit 都能讓您輕鬆實現。 如果您需要建立 AI 產品或將 AI 工具整合到您的軟體應用程式中,您應該考慮 CopilotKit。 您可以在 GitHub 上找到本教學的源程式碼: https://github.com/CopilotKit/spreadsheet-demo 感謝您的閱讀! --- 原文出處:https://dev.to/copilotkit/build-an-ai-powered-spreadsheet-app-nextjs-langchain-copilotkit-109d

加入我們參加下一個前端挑戰:地球日版!

--- 標題:加入我們,迎接下一個前端挑戰:地球日版! 發表:真實 描述: 標籤: frontendchallenge、devchallenge、js、css 封面圖:https://dev-to-uploads.s3.amazonaws.com/uploads/articles/emb626o0mysdsw32ox4k.png 使用 100:42 的比例可獲得最佳效果。 ===================== 發表於: 2024-04-17 14:14 +0000 =========================== --- 幾週前,我們開始了[第一個前端挑戰](https://dev.to/devteam/join-our-first-community-challenge-the-frontend-challenge-8be),並承諾如果社區喜歡參與,我們將定期舉辦這些挑戰 - 您的提交讓我們欣喜若狂,所以現在**我們又回來了**,我們的下一個前端挑戰! 對於下一個前端挑戰,我們將慶祝地球上最大的公民活動:**世界地球日**。 🌍🌏🌎 此挑戰有兩個提示。我們將為此挑戰帶回**CSS Art**和**Glam Up My Markup**提示 - 別擔心,One Byte Expander 將來會再次出現! 和上次一樣,每個提示都會有一個獲勝者,為了慶祝地球日,我們也將為此挑戰設置一個額外的獎品類別。這是贏得炫耀權、DEV 商店禮物和專屬 DEV 徽章的 3 次機會。與往常一樣,提交有效提交的參與者將獲得完成徽章。 *前端不是你的菜嗎?或者您正在尋找更大獎勵的挑戰? [Coze AI 機器人挑戰賽](https://dev.to/devteam/join-us-for-the-coze-ai-bot-challenge-3000-in-prizes-4dp7)現已開始,獎金池為 3,000 美元。* 繼續閱讀以了解每個提示以及如何參與! 提示 -- ### CSS 藝術:地球日 畫出您在地球日時想到的內容。這是我們美麗的星球嗎?它是提高人們對氣候變遷認識的象徵嗎?不管是什麼,告訴我們! 您提交的內容**不應使用任何 JavaScript** ,而應在 CSS 中發揮您的創造力。您提交的內容將包括標記,可能包括 SVG 等,但主要應該*展示*您的 CSS 技能。 **評審標準** - 創造力 - 有效使用CSS - 美感效果 這是供任何想要直接參與的人使用的提交模板,但請在提交之前查看[官方挑戰頁面](https://dev.to/challenges/frontend-2024-04-17)上的所有評審標準和挑戰規則。 {% cta https://dev.to/new?prefill=---%0Atitle%3A%20%0Apublished%3A%20%0Atags%3A%20frontendchallenge%2C%20devchallenge%2C%20css%0A---% 0A%0A\_This%20is%20a%20submission%20for%20%5BFrontend%20Challenge%20v24.04.17%5D(https%3A%2F%2Fdev.to%2Fdevteam%2Fjoin-us-for-the-next-frontend地球日版-52e4)%2C%20CSS%20Art%3A%20Earth%20Day.\_%0A%0A%23%23%20靈感%0A%3C!--%20What%20are%20you%20highlighting%20today% 3F %20--%3E%0A%0A%23%23%20Demo%20%0A%3C!--%20Show%20us%20your%20CSS%20Art!%20You%20can%20directly%20embed%20Art!%20You%20can%20directly%20embed%20an%20editor%20an%20editor%進入%20this%20post%20(參見%20the%20FAQ%20section%20of%20the%20challenge%20頁面)%20或%20you%20can%20share%20an%20image%20of%20your%20can%20share%20an%20image%20of%20your%20project%20% 20a%20public %20link%20到%20%20程式碼。 %2C%20what%20you %20已學會%2C%20anything%20you%20are%20尤其%20proud%20of%2C%20what%20you%20hope%20to%20do%20next%2C%20etc.%20--%3E %0A%0A%3C!-- %20Team%20Submissions%3A%20請%20pick%20one%20member%20to%20publish%20the%20submission%20and%20credit%20teammates%20by%20listing%20their%20DEV%20usernames%20directly %20in%20the%20body%20of%20the %20post.%20--%3E%0A%0A%3C!--%20We%20鼓勵%20you%20to%20考慮%20為%20your%20程式碼新增% 20a%20license%20。 %20想要)。 CSS 藝術挑戰提交模板 {% 結束%} ### 魅力我的標記:地球日慶祝活動登陸頁面 使用 CSS 和 JavaScript 使下面的入門 HTML 標記美觀、互動且有用。 您提交的內容應該比我們提供的 HTML 更有趣、更具互動性,而且還應該可用且易於存取。您不應直接編輯提供的 HTML,除非是透過 JavaScript。我們期待風格和實質。您可以加入基本樣板,包括元標記等以用於演示目的。 ``` <body> <header> <h1>Welcome to Our Earth Day Celebration!</h1> </header> <section> <article class="facts"> <h2>Did You Know?</h2> <p>Earth Day was first celebrated on April 22, 1970, and now includes a wide range of events coordinated globally by EARTHDAY.ORG including 1 billion people in more than 193 countries.</p> </article> <article> <h2>Why Celebrate Earth Day?</h2> <p>Earth Day is more than just a single day — April 22. It's a day to remind us to take action in our communities and beyond, to protect the environment, restore damaged ecosystems, and live a more sustainable life.</p> </article> <article> <h2>How You Can Help</h2> <p>Join us in making a difference! Here are some ways you can contribute to preserving our planet:</p> <ul> <li>Reduce, reuse, and recycle.</li> <li>Volunteer for cleanups in your community.</li> <li>Conserve water and electricity.</li> <li>Plant a tree.</li> <li>Educate others about environmental conservation.</li> </ul> </article> <div class="action-call"> <h2>Take Action Now</h2> <p>Join our Earth Day quiz to test your knowledge and learn more about what you can do to help our planet!</p> <a href="#">Start the Quiz!</a> </div> </section> <div class="testimonial"> <h2>Inspiration Corner</h2> <p>"The Earth does not belong to us: we belong to the Earth." - Marlee Matlin</p> <p>This Earth Day, let's remember we are part of a larger ecosystem and our actions have a profound impact on our planet.</p> </div> <div class="events"> <h2>Join an Event</h2> <p>Participate in local and global Earth Day events to take action towards a sustainable future. Check out <a href="#">events near you</a>.</p> </div> <footer> <p>Happy Earth Day! Together, we can make a difference.</p> </footer> </body> ``` **評審標準**: - 無障礙 - 可用性和使用者體驗 - 創造力 - 程式碼品質 這是供任何想要直接參與的人使用的提交模板,但請在提交之前查看[官方挑戰頁面](https://dev.to/challenges/frontend-2024-04-17)上的所有評審標準和挑戰規則。 {% cta https://dev.to/new?prefill=---%0Atitle%3A%20%0Apublished%3A%20%0Atags%3A%20devchallenge%2C%20frontendchallenge%2C%20css%2C%20javascript%2C%20frontendchallenge%2C%20css%2C%20javascript%0Ajava ---%0A%0A\_This%20is%20a%20submission%20for%20%5BFrontend%20Challenge%20v24.04.17%5D(https%3A%2F%2Fdev.to%2Fdevteam%2Fjoin-us-for-the-next前端挑戰-地球日-版本-52e4)%2C%20Glam%20Up%20My%20Markup%3A%20Earth%20Day%20Celebration%20Landing%20Page\_%0A%0A%23%23%20What%20I%20A0ABuilt% %3C!--%20告訴%20us%20什麼%20you%20built%20和%20what%20you%20是%20期待%20實現%20實現。 23%20示範%0A %3C!--%20Show%20us%20您的%20專案! 20the%20FAQ%20section%20from%20the%20challenge%20page )%20或%20you%20can%20share%20an%20image%20of%20your%20project%20and%20share%20a%20share%200%200%200%20share%程式碼。 20you%20are%20specially%20proud%20of%2C%20what%20you%20hope% 20至%20do%20next%2C%20等%20--%3E%0A%0A%3C!--%20團隊%20Submissions% 3A%20請%20pick%20one%20member%20至%20publish%20the%20submission%20and% 20credit%20teammates%20by%20listing%20their%20DEV%20usernames%20by%20listing%20their%20DEV%20usernames%20directthe%200%0%200inbody%200%200%200% %20--%3E%0A%0A%3C!--%20We%20encourage%20you% 20to%20考慮%20加入%20a%20許可證%20用於%20您的%20程式碼。 -%3E%0A%0A%3C! --%20Don%27t%20忘記%20to%20add%20a%20cover%20image%20to% 20您的%20貼文%20(如果%20您%20) 。 使我的標記提交模板更加迷人 {% 結束%} 附加獎類別 ----- 除了能夠贏得每個提示之外,我們還有一個特殊的獎品類別來紀念我們的星球: - 世界地球日:授予提高人們對氣候變遷認識的最佳提交作品。 除了前端挑戰賽獲勝者徽章和 DEV 商店贈送的禮物之外,我們的地球日獲勝者還將獲得一枚額外的超專屬徽章,用於展示其開發者檔案。 如何參與 ---- 為了參與,您需要使用提示的提交範本發布貼文。**您可以在[官方挑戰頁面](https://dev.to/challenges/frontend-2024-04-17)上找到所有評審標準、挑戰規則和提交範本。** 我們的規則和指南涵蓋了參賽要求、團隊提交、人工智慧的使用等主題,因此請務必仔細閱讀。 重要的日子 ----- 4 月 17 日:前端挑戰 v24.04.17 開始! 4 月 28 日:提交截止時間為太平洋夏令時間晚上 11:59 4 月 30 日:公佈得獎者 ![行星地球插圖](https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExaDFxNGZ5Z2wwdGV4YXE5M2o0bGc2cWpuMDFlYnBpMmlwdXV3eWs0aSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/l1KVcrdl7rJpFnY2s/giphy.gif) 我們很高興看到您的地球日專案!問題?請在下面詢問他們。 祝你好運,編碼愉快! --- 原文出處:https://dev.to/devteam/join-us-for-the-next-frontend-challenge-earth-day-edition-52e4

✨使用這些工具成為進階 Linux 用戶😎💫

## 簡介 本文列出了開發人員可以在 Linux 電腦上安裝的六種出色工具。 🎉 請隨意探索這些工具,並為這些儲存庫加註星標。開源專案需要您的幫助! 🙏🏻 您準備好成為 **10X Linux 使用者** 了嗎? 🧠 開玩笑,你不會的,😆 但這些工具絕對可以加快你的日常工作量。 🏃🏻‍♂️💨 ![笑 GIF](https://media.giphy.com/media/3o72FfM5HJydzafgUE/giphy.gif) *** **1. [Ngrok](https://ngrok.com/)** > 💡 安全地在線上公開本機伺服器。 ![ngrok cli 工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/y5rk3ko7fn4w8uvye1de.jpg) Ngrok 可協助您為本機 Web 伺服器建立公用 URL 🌐,以便您可以與團隊成員、客戶或全世界分享您正在進行的工作。 🌍 只需執行一個簡單的命令,Ngrok 就會啟動一條從公共端點到您的電腦的安全隧道。這使您可以在「localhost」上測試網站、應用程式和 API,而無需部署任何內容。 Ngrok 支援 HTTP 和 TCP 流量,因此您幾乎可以透過隧道傳輸任何內容 - Web 伺服器,甚至間接資料庫。它還提供有用的功能,例如自訂子網域和重播/檢查流量。 Ngrok 在以下主要領域提供協助: - 暫時分享一個僅在您的開發機器上執行的網站🖥️。 <br/> - 開發任何使用 webhook 的服務 🪝。 <br/> - 透過檢查網路流量來除錯 🧑‍💻 網路服務。 > ✨ 我不常使用這個工具,但我記得幾年前我第一次使用這個工具是為了向我的朋友展示我在本地建立的網站。 https://github.com/inconshreveable/ngrok 🌟 GitHub 上的 ngrok *** **2. [fzf](https://github.com/junegunn/fzf)** > 💡 命令列模糊查找器。 ![fzf cli 工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/m0m9bdx5v5chokkc3ni3.jpg) 對於那些花費大量時間在終端工作的人來說,Fzf 是一個有用的工具🖥️。它可作為模糊查找器,可讓您快速搜尋並過濾檔案、命令歷史記錄、git 提交等資料清單。 這是它的工作原理。當您執行“fzf”命令時,它會在您鍵入時立即過濾下面的列表,以僅顯示匹配的結果。 這是一個可能的用例。 😯 ``` ls -la | fzf ``` ![fzf 工具使用案例](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/58xp7w58iahqf62mk285.png) 這種互動式方法使您可以快速輕鬆地找到所需內容,即使在長列表中也是如此。模糊匹配意味著它將找到部分匹配,因此您不必輸入全名。 🤯 https://github.com/junegunn/fzf 🌟 GitHub 上的 fzf *** **3. [Z](https://github.com/rupa/z)** > 💡 在不知道整個路徑的情況下跳轉目錄。 ![z cli 工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5a2mhiv09d5qomevhfan.jpg) 您是否曾經處理過具有深層巢狀資料夾結構的專案,並且必須不斷使用 cd 命令鍵入長目錄📂路徑? Z 解決了這個問題。 😉 一旦您安裝並開始使用 Z,它就會追蹤您最常存取的目錄。然後,您可以輸入一個短名稱來立即跳轉 🦘 到該資料夾,而不是輸入完整路徑。 ![Z工具使用](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7cvmisaqr0vkkmdkthx1.jpg) Z 使用**兩個因素**來決定要為您追蹤哪些目錄:您存取資料夾的**頻率**以及您最近**存取該資料夾的方式。 因此,您最常使用的資料夾將獲得最短的名稱。 https://github.com/rupa/z 🌟 GitHub 上的 Z *** **4. [遊俠](https://github.com/ranger/ranger)** > 💡 受 VIM 啟發的控制台檔案管理器。 ![ranger cli 檔案](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/b396pdtrppbtdinamrts.jpg) Ranger 是一個**受 vim 啟發的**檔案管理器👮🏻,帶有控制台介面。它提供了一種易於使用且高效的方式來導航和檢視檔案系統。 Ranger 的一些主要特點是: - 多欄✨顯示 <br/> - 預覽所選檔案/目錄的📂 <br/> - 常見檔案操作(`create/chmod/copy/delete`/...) <br/> - 一次重新命名多個文件 <br/> - 類似 VIM 的控制台和熱鍵 ⌨️ ![ranger cli 檔案](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/6d6m0lu91gkyi88ti7y0.png) https://github.com/ranger/ranger 🌟 GitHub 上的 Ranger *** **5. [Ncdu](https://www.howtoing.com/ncdu-a-ncurses-based-disk-usage-analyzer-and-tracker/)** > 💡 查看 Linux 系統上使用的檔案和磁碟空間。 Ncdu 是一個有用的命令列工具,可以幫助您有效地管理磁碟空間。 它以直觀方式顯示磁碟機上的空間使用情況,使您可以輕鬆辨識佔用最多空間的大檔案和資料夾。 當您執行 Ncdu 時,它會掃描您的檔案系統並在終端機中顯示互動式列表,向您顯示磁碟機上的每個資料夾以及它們使用了多少空間。您可以導航此清單以深入查看並查看子資料夾的空間使用情況📂。 ![ncdu cli 工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/70889hif0ue5w7ev04vu.png) 其簡單的介面使其易於使用,但功能強大,可用於分析磁碟使用情況和最佳化儲存。 如果您遇到磁碟空間💾填滿的問題,Ncdu 可以成為一個方便的工具來辨識罪魁禍首並採取行動。 👮🏻 *** **6。 [Exa](https://github.com/ogham/exa)** - _最好有_ > 💡 `ls` 指令的多彩替換。 ![exa cli 工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/tykdqcgsnqdqcku9j8ro.jpg) > 🚨 Exa 現已不再維護,請使用 [eza](https://github.com/eza-community/eza)。它是 exa 的一個分支,增加了一些功能。但我仍在使用 Exa,而且效果很好。它們幾乎是一樣的。 Exa 是舊的「ls」指令的現代替代品,您在終端機中使用該指令列出檔案和資料夾。它為您提供當前目錄中更豐富多彩、詳細且易於閱讀的文件清單。 當您執行 **exa** 而不是 `ls` 時,您會看到一些不錯的改進。首先,它使用不同的顏色和圖示(啟用或停用)對文件類型進行顏色編碼💬,從而更容易一目了然地在視覺上區分文件。 它還會向您顯示額外的訊息,例如文件權限、所有者、大小等。 ![exa cli 工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/dn2d0k7kgqkjp56a4ykl.png) https://github.com/ogham/exa 🌟 GitHub 上的 Exa *** > 如果您認為本文中未提及的任何其他方便的工具,請在下面的評論部分中分享。 👇🏻 那麼,這就是本文的內容。非常感謝您的閱讀! 🎉🫡 https://dev.to/shricodev --- 原文出處:https://dev.to/shricodev/be-a-10x-linux-user-with-these-tools-3g1f

給新手開發者的 Git 指南

🩺 醫生有聽診器。 🔧 機械師有扳手。 👨‍💻 我們開發人員,有 Git。 您是否注意到 Git 對於程式碼工作來說是如此不可或缺,以至於人們幾乎從未將其包含在他們的技術堆疊或簡歷中?假設你已經知道了,或至少足以應付,但你知道嗎? Git 是一個版本控制系統(VCS)。無所不在的技術使我們能夠儲存、更改程式碼並與他人合作。 > 🚨 作為免責聲明,我想指出 Git 是一個很大的話題。 Git 書籍已經出版,部落格文章也可能被誤認為是學術論文。這不是我來這裡的目的。**我不是 Git 專家**。我的目標是寫一篇我希望在學習 Git 時擁有的 Git 基礎文章。 作為開發人員,我們的日常工作圍繞著閱讀、編寫和審查程式碼。 Git 可以說是我們使用的最重要的工具之一。身為開發人員,掌握 Git 提供的特性和功能是您可以對自己進行的最佳投資之一。 讓我們開始吧 ![git](https://media4.giphy.com/media/v1.Y2lkPTc5MGI3NjExMXZqODl2Zjk5cTUzYWo3Nnptam1qYWdqYm4xcmY5dXEyY2RzZWZrbCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/m0HehxSuVPd9CE3L4H/giphy.gif) > 如果您覺得我錯過了或應該更詳細地了解特定命令,請在下面的評論中告訴我。我將相應地更新這篇文章。 🙏 --- 當我們談論這個話題時 ---------- 如果您希望將 Git 技能運用到工作中並願意為 Glasskube 做出貢獻,我們於 2 月正式推出,我們的目標是成為 Kubernetes 套件管理的預設預設解決方案。有了您的支持,我們就能實現這一目標。表達您支持的最佳方式是在 GitHub 上為我們加註星標 ⭐ [![連小貓也喜歡送星星](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nzaxhc3f53sggz7v3bw4.jpeg)](https://github.com/glasskube/glasskube) --- 讓我們打好基礎 ------- Git 有沒有讓你感覺像 Peter Griffin 一樣? 如果您沒有以正確的方式學習 Git,您可能會不斷地摸不著頭腦,陷入同樣的問題,或者後悔有一天在終端中出現另一個合併衝突。讓我們定義一些基本的 Git 概念來確保這種情況不會發生。 ![git-2](https://media4.giphy.com/media/v1.Y2lkPTc5MGI3NjExNjBqNHlnNjgwZHl4ZmdtMW8wbGJjYWJ5MmQyN2x4YXJpeXAxNWFsZCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/jcKiy2CqRIYM8W3E4p/giphy.gif) ### 分公司 在 Git 儲存庫中,您會發現一條開發主線,通常名為「main」或「master」( [已棄用](https://github.blog/changelog/2020-10-01-the-default-branch-for-newly-created-repositories-is-now-main/)),其中有幾個[分支](https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell)分支。這些分支代表同時的工作流程,使開發人員能夠在同一專案中同時處理多個功能或修復。 ![Git 分支](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/t3p5q80hldckku20urm0.png) ### 提交 Git 提交作為更新程式碼的捆綁包,捕獲專案程式碼在特定時間點的快照。每次提交都會記錄自上次記錄以來所做的更改,共同建立專案開發旅程的全面歷史。 ![Git 提交](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/dcjp286j11bqkx0k9w35.png) 當引用提交時,您通常會使用其唯一標識的加密[雜湊](https://www.mikestreety.co.uk/blog/the-git-commit-hash/)。 例子: ``` git show abc123def456789 ``` 這顯示了有關該哈希提交的詳細資訊。 ### 標籤 Git[標籤](https://git-scm.com/book/en/v2/Git-Basics-Tagging)充當 Git 歷史中的地標,通常標記專案開發中的重要里程碑,例如`releases` 、 `versions`或`standout commits` 。這些標籤對於標記特定時間點非常有價值,通常代表專案旅程中的起點或主要成就。 ![Git 標籤](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/06uilykiq1ky6dtnr3ez.png) ### 頭 目前簽出分支上的最新提交由`HEAD`指示,充當儲存庫中任何引用的指標。當您位於特定分支時, `HEAD`指向該分支上的最新提交。有時, `HEAD`可以直接指向特定的提交( `detached HEAD`狀態),而不是指向分支的尖端。 ### 階段 了解 Git 階段對於導航 Git 工作流程至關重要。它們代表文件更改在提交到儲存庫之前發生的邏輯轉換。 讓我們深入研究一下 Git 階段的概念: ![Git 階段](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/96ndc8w183kh0tcb3uxb.png) #### 工作目錄👷 `working directory`是您編輯、修改和建立專案文件的位置。表示本機上檔案的目前狀態。 #### 暫存區🚉 `staging`區域就像一個保留區域或預提交區域,您可以在其中準備更改,然後再將更改提交到儲存庫。 > 這裡有用的指令: `git add` > `git rm`也可用於取消暫存更改 #### 本地儲存庫🗄️ 本機儲存庫是 Git 永久儲存已提交變更的位置。它允許您查看專案的歷史記錄,恢復到以前的狀態,並與同一程式碼庫上的其他人進行協作。 > 您可以使用以下指令提交暫存區域中準備好的變更: `git commit` #### 遠端儲存庫🛫 遠端儲存庫是一個集中位置,通常託管在伺服器(例如 GitHub、GitLab 或 Bitbucket)上,您可以在其中與其他人共用專案並進行協作。 > 您可以使用`git push`和`git pull`等命令將提交的變更從本機儲存庫推送/拉取到遠端儲存庫。 Git 入門 ------ 好吧,你必須從某個地方開始,在 Git 中那就是你的`workspace` 。您可以`fork`或`clone`現有儲存庫並擁有該工作區的副本,或者如果您在電腦上的新本機資料夾中全新開始,則必須使用`git init`將其轉換為 git 儲存庫。不容忽視的下一步是設定您的憑證。 ![Source: Shuai Li](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/fqr8mylqjo91zurb7gmi.png) ### 憑證設定 當執行推送和拉取到遠端儲存庫時,您不想每次都輸入使用者名稱和密碼,只需執行以下命令即可避免這種情況: ``` git config --global credential.helper store ``` 第一次與遠端儲存庫互動時,Git 會提示您輸入使用者名稱和密碼。之後,您將不再收到提示 > 請務必注意,憑證以純文字格式儲存在`.git-credentials`檔案中。 若要檢查已配置的憑證,您可以使用下列命令: ``` git config --global credential.helper ``` ### 與分公司合作 在本地工作時,了解您目前所在的分支至關重要。這些命令很有幫助: ``` # Will show the changes in the local repository git branch # Or create a branch directly with git branch feature-branch-name ``` 若要在分支之間轉換,請使用: ``` git switch ``` 除了在它們之間進行轉換之外,您還可以使用: ``` git checkout # A shortcut to switch to a branch that is yet to be created with the -b flag git checkout -b feature-branch-name ``` 若要檢查儲存庫的狀態,請使用: ``` git status ``` 始終清楚了解當前分支的一個好方法是在終端機中查看它。許多終端插件可以幫助解決這個問題。這是[一個](https://gist.github.com/joseluisq/1e96c54fa4e1e5647940)。 ![終端視圖](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nycmbxgrtplax7q83g3n.png) ### 使用提交 在處理提交時,使用 git commit -m 記錄更改,使用 git amend 修改最近的提交,並盡力遵守[提交訊息約定](https://gist.github.com/qoomon/5dfcdf8eec66a051ecd85625518cfd13)。 ``` # Make sure to add a message to each commit git commit -m "meaningful message" ``` 如果您對上次提交進行了更改,則不必完全建立另一個提交,您可以使用 --amend 標誌來使用分階段變更來修改最近的提交 ``` # make your changes git add . git commit --amend # This will open your default text editor to modify the commit message if needed. git push origin your_branch --force ``` > ⚠️ 使用`--force`時要小心,因為它有可能涵蓋目標分支的歷史記錄。通常應避免在 main/master 分支上應用它。 > 根據經驗,最好經常提交,以避免遺失進度或意外重置未暫存的變更。之後可以透過壓縮多個提交或進行互動式變基來重寫歷史記錄。 使用`git log`顯示按時間順序排列的提交列表,從最近的提交開始並按時間倒推 操縱歷史 ---- 操縱歷史涉及一些強大的命令。 `Rebase`重寫提交歷史記錄, `Squashing`將多個提交合併為一個,而`Cherry-picking`選擇特定提交。 ### 變基和合併 將變基與合併進行比較是有意義的,因為它們的目標相同,但實現方式不同。關鍵的差異在於變基重寫了專案的歷史。對於重視清晰且易於理解的專案歷史的專案來說,這是理想的選擇。另一方面,合併透過產生新的合併提交來維護兩個分支歷史記錄。 在變基期間,功能分支的提交歷史記錄在移動到主分支的`HEAD`時會被重組 ![狐狸](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ytea832muxycodnkdlma.png) 這裡的工作流程非常簡單。 確保您位於要變基的分支上並從遠端儲存庫取得最新變更: ``` git checkout your_branch git fetch ``` 現在選擇您想要變基的分支並執行以下命令: ``` git rebase upstream_branch ``` 變基後,如果分支已推送到遠端儲存庫,您可能需要強制推送變更: ``` git push origin your_branch --force ``` > ⚠️ 使用`--force`時要小心,因為它有可能涵蓋目標分支的歷史記錄。通常應避免在 main/master 分支上應用它。 ### 擠壓 Git 壓縮用於將多個提交壓縮為單一、有凝聚力的提交。 ![git 擠壓](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/owzri2ufj3meqhtjjpc0.png) 這個概念很容易理解,如果使用的統一程式碼的方法是變基,則特別有用,因為歷史記錄會被改變,所以注意對專案歷史記錄的影響很重要。有時我很難執行擠壓,特別是使用互動式變基,幸運的是我們有一些工具可以幫助我們。這是我首選的壓縮方法,其中涉及將 HEAD 指標向後移動 X 次提交,同時保留分階段的變更。 ``` # Change to the number after HEAD~ depending on the commits you want to squash git reset --soft HEAD~X git commit -m "Your squashed commit message" git push origin your_branch --force ``` > ⚠️ 使用`--force`時要小心,因為它有可能涵蓋目標分支的歷史記錄。通常應避免在 main/master 分支上應用它。 ### 採櫻桃 櫻桃採摘對於選擇性地合併從一個分支到另一個分支的更改非常有用,特別是當合併整個分支不合需要或不可行時。然而,明智地使用櫻桃選擇很重要,因為如果應用不當,可能會導致重複提交和不同的歷史記錄 ![採櫻桃](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/wxe90o4u26mikikee9f1.png) 要先執行此操作,您必須確定要選擇的提交的提交哈希,您可以使用`git log`來執行此操作。一旦確定了提交哈希,您就可以執行: ``` git checkout target_branch git cherry-pick <commit-hash> # Do this multiple times if multiple commits are wanted git push origin target_branch ``` 高級 Git 指令 --------- ### 簽署提交 對提交進行簽名是一種驗證 Git 中提交的真實性和完整性的方法。它允許您使用 GPG (GNU Privacy Guard) 金鑰對您的提交進行加密簽名,從而向 Git 保證您確實是該提交的作者。您可以透過建立 GPG 金鑰並將 Git 配置為在提交時使用該金鑰來實現此目的。 步驟如下: ``` # Generate a GPG key gpg --gen-key # Configure Git to Use Your GPG Key git config --global user.signingkey <your-gpg-key-id> # Add the public key to your GitHub account # Signing your commits with the -S flag git commit -S -m "Your commit message" # View signed commits git log --show-signature ``` ### 轉發日誌 我們還沒有探討的一個主題是 Git 引用,它們是指向儲存庫中各種物件的指針,主要是提交,還有標籤和分支。它們可作為 Git 歷史記錄中的命名點,允許使用者瀏覽儲存庫的時間軸並存取專案的特定快照。了解如何導航 git 引用非常有用,他們可以使用 git reflog 來做到這一點。 以下是一些好處: - 恢復遺失的提交或分支 - 除錯和故障排除 - 糾正錯誤 ### 互動式變基 互動式變基是一個強大的 Git 功能,可讓您以互動方式重寫提交歷史記錄。它使您能夠在將提交應用到分支之前對其進行修改、重新排序、組合或刪除。 為了使用它,您必須熟悉可能的操作,例如: - 選擇(“p”) - 改寫(“r”) - 編輯(“e”) - 壁球(“s”) - 刪除(“d”) ![互動式變基](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/98sngs9j2dl5awcmm8dt.png) 這是一個有用的[影片,](https://www.youtube.com/watch?v=qsTthZi23VE)用於學習如何在終端中執行互動式變基,我還在部落格文章的底部連結了一個有用的工具。 與 Git 協作 -------- ### 起源與上游 **來源**是複製本機 Git 儲存庫時與本機 Git 儲存庫關聯的預設遠端儲存庫。如果您分叉了一個儲存庫,那麼預設情況下該分叉將成為您的「原始」儲存庫。 另一方面,**上游**指的是您的儲存庫分叉的原始儲存庫。 為了讓您的分叉儲存庫與原始專案的最新更改保持同步,您可以從「上游」儲存庫中 git 取得更改,並將它們合併或變基到本機儲存庫中。 若要查看與本機 Git 儲存庫關聯的遠端儲存庫,請執行: ``` git remote -v ``` ### 衝突 不要驚慌,當嘗試合併或變基分支並檢測到衝突時,這只意味著存儲庫中同一文件或文件的不同版本之間存在衝突的更改,並且可以輕鬆解決(大多數情況下)。 ![合併衝突](https://media3.giphy.com/media/v1.Y2lkPTc5MGI3NjExbXRiM3o5cWd0OGZ3Z2NudGhlb2gyaXhheTRmcGx0bW5sN3UzNXJhYSZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/cFkiFMDg3iFoI/giphy.gif) 它們通常在受影響的文件中指示,Git 在其中插入衝突標記`<<<<<<<` 、 `=======`和`>>>>>>>`以突出顯示衝突部分。 決定保留、修改或刪除哪些更改,確保產生的程式碼有意義並保留預期的功能。 手動解決衝突檔案中的衝突後,刪除衝突標記`<<<<<<<` 、 `=======`和`>>>>>>>`並根據需要調整程式碼。 對解決方案感到滿意後,請儲存衝突文件中的變更。 > 如果您在解決衝突時遇到問題,該[影片](https://www.youtube.com/watch?v=xNVM5UxlFSA)可以很好地解釋它。 流行的 Git 工作流程 ------------ ![git 工作流程](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/x955re263jtueig35kyg.png) 存在各種 Git 工作流程,但需要注意的是,不存在通用的「最佳」Git 工作流程。相反,每種方法都有其自身的優點和缺點。讓我們來探索這些不同的工作流程,以了解它們的優點和缺點。 ![git 工作流程](https://media2.giphy.com/media/v1.Y2lkPTc5MGI3NjExeTY0eTI3anV6YnJ3Y2Y3bzd6ZTE5dHJ6OG9hdDNsM3hwcW1ubHZiMCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/dSetNZo2AJfptAk9hp/giphy.gif) ### 功能分支工作流程🌱 每個新功能或錯誤修復都是在自己的分支中開發的,然後在完成後將其合併回主分支。 > - **優點**:隔離變更並減少衝突。 > - **弱點**:可能變得複雜並且需要勤奮的分行管理。 ### Gitflow 工作流程 🌊 Gitflow 定義了嚴格的分支模型,為不同類型的開發任務提供了預先定義的分支。 它包括長期分支,例如 main、develop、feature 分支、release 分支和 hotfix 分支。 > - **優點**:適合定期發布、長期維護的專案。 > - **缺點**:對於較小的團隊來說可能過於複雜 ### 分岔工作流程🍴 在此工作流程中,每個開發人員都會複製主儲存庫,但他們不會將變更直接推送到主儲存庫,而是將變更推送到自己的儲存庫分支。然後,開發人員建立拉取請求以提出對主儲存庫的更改,從而允許在合併之前進行程式碼審查和協作。 這是我們在開源 Glasskube 儲存庫上進行協作的工作流程。 > - **優點**:鼓勵外部貢獻者進行協作,而無需授予對主儲存庫的直接寫入存取權。 > - **弱點**:維持分支和主儲存庫之間的同步可能具有挑戰性。 ### 拉取請求工作流程 ⏩ 與分叉工作流程類似,但開發人員不是分叉,而是直接在主儲存庫中建立功能分支。 > - **優點**:促進團隊成員之間的程式碼審查、協作和知識共享。 > - **弱點**:對人類程式碼審查員的依賴可能會導致開發過程延遲。 ### 基於主幹的開發🪵 如果您所在的團隊專注於快速迭代和持續交付,您可能會使用基於主幹的開發,開發人員直接在主分支上工作,提交小而頻繁的變更。 > - **優勢**:促進快速迭代、持續集成,並專注於為生產提供小而頻繁的變更。 > - **缺點**:需要強大的自動化測試和部署管道來確保主分支的穩定性,可能不適合發佈時間表嚴格或功能開發複雜的專案。 ### 什麼叉子? 強烈建議在開源專案上進行分叉,因為您可以完全控制自己的儲存庫副本。您可以進行變更、嘗試新功能或修復錯誤,而不會影響原始專案。 > 💡 我花了很長時間才弄清楚,雖然分叉存儲庫作為單獨的實體開始,但它們保留了與原始存儲庫的連接。此連接可讓您追蹤原始專案中的變更並將您的分支與其他人所做的更新同步。 這就是為什麼即使您推送到原始存儲庫也是如此。您的變更也會顯示在遙控器上。 Git 備忘錄 ------- ``` # Clone a Repository git clone <repository_url> # Stage Changes for Commit git add <file(s)> # Commit Changes git commit -m "Commit message" # Push Changes to the Remote Repository git push # Force Push Changes (use with caution) git push --force # Reset Working Directory to Last Commit git reset --hard # Create a New Branch git branch <branch_name> # Switch to a Different Branch git checkout <branch_name> # Merge Changes from Another Branch git merge <branch_name> # Rebase Changes onto Another Branch (use with caution) git rebase <base_branch> # View Status of Working Directory git status # View Commit History git log # Undo Last Commit (use with caution) git reset --soft HEAD^ # Discard Changes in Working Directory git restore <file(s)> # Retrieve Lost Commit References git reflog # Interactive Rebase to Rearrange Commits git rebase --interactive HEAD~3 ``` --- 獎金!一些 Git 工具和資源可以讓您的生活更輕鬆。 -------------------------- - 互動式變基[工具](https://github.com/MitMaro/git-interactive-rebase-tool)。 - [Cdiff](https://github.com/amigrave/cdiff)查看豐富多彩的增量差異。 - 互動式 Git 分支[遊樂場](https://learngitbranching.js.org/?locale=en_US) --- 如果您喜歡這類內容並希望看到更多內容,請考慮在 GitHub 上給我們一個 Star 來支持我們🙏 [![連小貓也喜歡送星星](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/nzaxhc3f53sggz7v3bw4.jpeg)](https://github.com/glasskube/glasskube) --- 原文出處:https://dev.to/glasskube/the-guide-to-git-i-never-had-1450

如何建構:人工智慧驅動的部落格平台(Next.js、Langchain 和 Supabase)

**長話短說** -------- 在本文中,您將學習如何建立一個人工智慧驅動的部落格平台,該平台可以搜尋網路並研究部落格文章的任何主題。 我們將涵蓋: - 用於應用程式框架的 Next.js 🖥️ - 法學碩士 OpenAI 🧠 - LangChain 和 Tavily 的網路搜尋人工智慧代理🤖 - 使用 CopilotKit 將 AI 整合到您的應用程式中 🪁 - Supabase 用於儲存和檢索部落格平台文章資料。 --- CopilotKit:開源 Copilot 框架 ======================== CopilotKit 是[開源 AI 副駕駛框架和平台。](https://github.com/CopilotKit/CopilotKit)我們可以輕鬆地將強大的人工智慧整合到您的 React 應用程式中。 建造: - ChatBots💬:上下文感知的應用內聊天機器人,可以在應用程式內執行操作 - CopilotTextArea📝:人工智慧驅動的文字字段,具有上下文感知自動完成和插入功能 - 聯合代理🤖:應用程式內人工智慧代理,可以與您的應用程式和使用者互動。由浪鏈提供技術支援。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/i8gltoave8490fg234ro.gif) {% cta https://github.com/CopilotKit/CopilotKit %} Star CopilotKit ⭐️ {% endcta %} (原諒人工智慧的拼字錯誤並給一顆星:) 現在回到文章。 --- **先決條件** -------- 在開始建立應用程式之前,讓我們先查看建置應用程式所需的依賴項或套件 - `copilotkit/react-core` :CopilotKit 前端包,帶有 React hooks,用於向副駕駛提供應用程式狀態和操作(AI 功能) - `copilotkit/react-ui:`聊天機器人側邊欄 UI 的 CopilotKit 前端包 - `copilotkit/react-textarea:` CopilotKit 前端包,用於在演講者筆記中進行人工智慧輔助文字編輯。 - `LangChainJS:`用於開發由語言模型支援的應用程式的框架。 - `Tavily Search API:`幫助將法學碩士和人工智慧應用程式連接到可信賴的即時知識的 API。 安裝所有專案包和依賴項 ----------- 在安裝所有專案包和依賴項之前,我們首先在終端機上執行以下命令來建立 Nextjs 專案。 ``` npx create-next-app@latest ``` 然後系統會提示您選擇一些選項。請隨意標記它們,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/1j04grq2jykx6o606u1s.png) 之後,使用您選擇的文字編輯器開啟新建立的 Nextjs 專案。然後在命令列中執行以下命令來安裝所有專案包和依賴項。 ``` npm i @copilotkit/backend @copilotkit/shared @langchain/langgraph @copilotkit/react-core @copilotkit/react-ui @copilotkit/react-textarea @supabase/ssr @supabase/auth-helpers-nextjs ``` **建立部落格平台前端** ------------- 在本節中,我將引導您完成使用靜態內容建立部落格平台前端的過程,以定義平台的使用者介面。 首先,前往`/[root]/src/app`並建立一個名為`components`的資料夾。在 Components 資料夾中,建立一個名為`Article.tsx`的檔案。 之後,將以下程式碼新增至定義名為`Article`功能元件的檔案中,該元件將用於呈現文章建立表單。 ``` "use client"; import { useRef, useState } from "react"; export function Article() { // Define state variables for article outline, copilot text, and article title const [articleOutline, setArticleOutline] = useState(""); const [copilotText, setCopilotText] = useState(""); const [articleTitle, setArticleTitle] = useState(""); return ( // Form element for article input <form action={""} className="w-full h-full gap-10 flex flex-col items-center p-10"> {/* Input field for article title */} <div className="flex w-full items-start gap-3"> <textarea className="p-2 w-full h-12 rounded-lg flex-grow overflow-x-auto overflow-y-hidden whitespace-nowrap" id="title" name="title" value={articleTitle} placeholder="Article Title" onChange={(event) => setArticleTitle(event.target.value)} /> </div> {/* Textarea for article content */} <textarea className="p-4 w-full aspect-square font-bold text-xl bg-slate-800 text-white rounded-lg resize-none" id="content" name="content" value={copilotText} placeholder="Write your article content here" onChange={(event) => setCopilotText(event.target.value)} /> {/* Publish button */} <button type="submit" className="p-4 w-full !bg-slate-800 text-white rounded-lg">Publish</button> </form> ); } ``` 接下來,將另一個檔案新增到元件資料夾中,並將其命名為`Header.tsx` 。然後將以下程式碼新增至定義名為`Header`的功能元件的檔案中,該元件將呈現部落格平台的導覽列。 ``` import Link from "next/link"; export default function Header() { return ( <> <header className="flex flex-wrap sm:justify-start sm:flex-nowrap z-50 w-full bg-white border-b border-gray-200 text-sm py-3 sm:py-0 "> <nav className="relative max-w-7xl w-full mx-auto px-4 sm:flex sm:items-center sm:justify-between sm:px-6 lg:px-8" aria-label="Global"> <div className="flex items-center justify-between"> <Link className="flex-none text-xl font-semibold " href="/" aria-label="Brand"> AIBlogging </Link> </div> <div id="navbar-collapse-with-animation" className=""> <div className="flex flex-col gap-y-4 gap-x-0 mt-5 sm:flex-row sm:items-center sm:justify-end sm:gap-y-0 sm:gap-x-7 sm:mt-0 sm:ps-7"> <Link className="flex items-center font-medium text-gray-500 border-2 border-indigo-600 text-center p-2 rounded-md hover:text-blue-600 sm:border-s sm:my-6 " href="/writearticle"> Create Post </Link> </div> </div> </nav> </header> </> ); } ``` 之後,轉到`/[root]/src/app`並建立一個名為`writearticle`的資料夾。在`writearticle`資料夾中,建立一個名為`page.tsx`檔案。然後將以下程式碼加入匯入`Article`和`Header`元件的檔案中。然後,程式碼定義了一個名為`WriteArticle`的功能元件,它將呈現導覽列和文章建立表單。 ``` import { Article } from "../components/Article"; import Header from "../components/Header"; export default function WriteArticle() { return ( <> <Header /> <Article /> </> ); } ``` 接下來,前往`/[root]/src/page.tsx`文件,並新增以下程式碼,該程式碼定義一個名為`Home`功能元件,該元件呈現將顯示已發佈文章清單的部落格平台主頁。 ``` import Image from "next/image"; import Link from "next/link"; import Header from "./components/Header"; const Home = async () => { return ( <> <Header /> <div className="max-w-[85rem] h-full px-4 py-10 sm:px-6 lg:px-8 lg:py-14 mx-auto"> <div className="grid sm:grid-cols-2 lg:grid-cols-3 gap-6"> <Link key={""} className="group flex flex-col h-full bg-white border border-gray-200 hover:border-transparent hover:shadow-lg transition-all duration-300 rounded-xl p-5 " href={""}> <div className="aspect-w-16 aspect-h-11"> <Image className="object-cover h-48 w-96 rounded-xl" src={`https://source.unsplash.com/featured/?${encodeURIComponent( "hello world" )}`} width={500} height={500} alt="Image Description" /> </div> <div className="my-6"> <h3 className="text-xl font-semibold text-gray-800 "> Hello World </h3> </div> </Link> </div> </div> </> ); }; export default Home; ``` 之後,請轉到`next.config.js`檔案並加入以下程式碼,該程式碼允許您使用 Unsplash 中的圖像作為已發布文章的封面圖像。 ``` module.exports = { images: { remotePatterns: [ { protocol: "https", hostname: "source.unsplash.com", }, ], }, }; ``` 最後,在命令列上執行命令`npm run dev` ,然後導航到 http://localhost:3000/。現在您應該在瀏覽器上查看部落格平台前端,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/m319h0j3ta0xa1fhkezo.png) **將部落格平台與 CopilotKit 後端集成** --------------------------- 在本節中,我將引導您完成將部落格平台與 CopilotKit 後端整合的過程,CopilotKit 後端處理來自前端的請求,提供函數呼叫和各種 LLM 後端(例如 GPT)。此外,我們將整合一個名為 Tavily 的人工智慧代理,它可以研究網路上的任何主題。 首先,在根目錄中建立一個名為`.env.local`的檔案。然後在保存`ChatGPT`和`Tavily` Search API 金鑰的檔案中加入下面的環境變數。 ``` OPENAI_API_KEY="Your ChatGPT API key" TAVILY_API_KEY="Your Tavily Search API key" ``` 若要取得 ChatGPT API 金鑰,請導覽至 https://platform.openai.com/api-keys。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/co9getwdzh34u1k5cehf.png) 若要取得 Tavilly Search API 金鑰,請導覽至 https://app.tavily.com/home ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ju9syhy5w8oip67tyne0.png) 之後,轉到`/[root]/src/app`並建立一個名為`api`的資料夾。在`api`資料夾中,建立一個名為`copilotkit`的資料夾。在`copilotkit`資料夾中,建立一個名為`research.ts`的檔案。然後導航到[該 Research.ts gist 文件](https://gist.github.com/TheGreatBonnie/58dc21ebbeeb8cbb08df665db762738c),複製程式碼,並將其新增至**`research.ts`**檔案中 接下來,在`/[root]/src/app/api/copilotkit`資料夾中建立一個名為`route.ts`的檔案。該文件將包含設定後端功能來處理 POST 請求的程式碼。它有條件地包括對給定主題進行研究的“研究”操作。 現在在文件頂部導入以下模組。 ``` import { CopilotBackend, OpenAIAdapter } from "@copilotkit/backend"; // For backend functionality with CopilotKit. import { researchWithLangGraph } from "./research"; // Import a custom function for conducting research. import { AnnotatedFunction } from "@copilotkit/shared"; // For annotating functions with metadata. ``` 在上面的程式碼下面,定義一個執行時間環境變數和一個名為`researchAction`的函數,該函數使用下面的程式碼對某個主題進行研究。 ``` // Define a runtime environment variable, indicating the environment where the code is expected to run. export const runtime = "edge"; // Define an annotated function for research. This object includes metadata and an implementation for the function. const researchAction: AnnotatedFunction<any> = { name: "research", // Function name. description: "Call this function to conduct research on a certain topic. Respect other notes about when to call this function", // Function description. argumentAnnotations: [ // Annotations for arguments that the function accepts. { name: "topic", // Argument name. type: "string", // Argument type. description: "The topic to research. 5 characters or longer.", // Argument description. required: true, // Indicates that the argument is required. }, ], implementation: async (topic) => { // The actual function implementation. console.log("Researching topic: ", topic); // Log the research topic. return await researchWithLangGraph(topic); // Call the research function and return its result. }, }; ``` 然後在上面的程式碼下加入下面的程式碼來定義處理POST請求的非同步函數。 ``` // Define an asynchronous function that handles POST requests. export async function POST(req: Request): Promise<Response> { const actions: AnnotatedFunction<any>[] = []; // Initialize an array to hold actions. // Check if a specific environment variable is set, indicating access to certain functionality. if (process.env["TAVILY_API_KEY"]) { actions.push(researchAction); // Add the research action to the actions array if the condition is true. } // Instantiate CopilotBackend with the actions defined above. const copilotKit = new CopilotBackend({ actions: actions, }); // Use the CopilotBackend instance to generate a response for the incoming request using an OpenAIAdapter. return copilotKit.response(req, new OpenAIAdapter()); } ``` **將部落格平台與 CopilotKit 前端集成** --------------------------- 在本節中,我將引導您完成將部落格平台與 CopilotKit 前端整合的過程,以促進部落格文章研究和文章大綱生成。我們將使用聊天機器人側欄元件、copilot 文字區域元件、用於向 Copilot 提供應用程式狀態和其他資訊的 useMakeCopilotReadable 掛鉤,以及用於提供 Copilot 可以呼叫的操作的 useCopilotAction 掛鉤 首先,導入`/[root]/src/app/components/Article.tsx`檔案頂部的`useMakeCopilotReadable` 、 `useCopilotAction` 、 `CopilotTextarea`和`HTMLCopilotTextAreaElement`掛鉤。 ``` import { useMakeCopilotReadable, useCopilotAction, } from "@copilotkit/react-core"; import { CopilotTextarea, HTMLCopilotTextAreaElement, } from "@copilotkit/react-textarea"; ``` 在 Article 函數內的狀態變數下方,新增以下程式碼,該程式碼使用`useMakeCopilotReadable`掛鉤來新增將作為應用程式內聊天機器人的上下文產生的文章大綱。鉤子使副駕駛可以閱讀文章大綱。 ``` useMakeCopilotReadable("Blog article outline: " + JSON.stringify(articleOutline)); ``` 在`useMakeCopilotReadable`掛鉤下方,使用以下程式碼建立一個名為`copilotTextareaRef`的引用,該引用指向名為`HTMLCopilotTextAreaElement`的文字區域元素。 ``` const copilotTextareaRef = useRef<HTMLCopilotTextAreaElement>(null); ``` 在上面的程式碼下方,加入以下程式碼,該程式碼使用`useCopilotAction`掛鉤來設定名為`researchBlogArticleTopic`的操作,該操作將啟用對部落格文章的給定主題的研究。此操作採用兩個參數,稱為`articleTitle`和`articleOutline` ,這兩個參數可以產生文章標題和大綱。 該操作包含一個處理程序函數,該函數根據給定主題生成文章標題和大綱。在處理函數內部, `articleOutline`狀態會使用新產生的大綱進行更新,而`articleTitle`狀態會使用新產生的標題進行更新,如下所示。 ``` useCopilotAction( { name: "researchBlogArticleTopic", description: "Research a given topic for a blog article.", parameters: [ { name: "articleTitle", type: "string", description: "Title for a blog article.", required: true, }, { name: "articleOutline", type: "string", description:"Outline for a blog article that shows what the article covers.", required: true, }, ], handler: async ({ articleOutline, articleTitle }) => { setArticleOutline(articleOutline); setArticleTitle(articleTitle); }, }, [] ); ``` 在上面的程式碼下方,前往表單元件並新增以下`CopilotTextarea`元素,該元素將使您能夠為文章內容新增補全、插入和編輯。 ``` <CopilotTextarea value={copilotText} ref={copilotTextareaRef} placeholder="Write your article content here" onChange={(event) => setCopilotText(event.target.value)} className="p-4 w-full aspect-square font-bold text-xl bg-slate-800 text-white rounded-lg resize-none" placeholderStyle={{ color: "white", opacity: 0.5, }} autosuggestionsConfig={{ textareaPurpose: articleTitle, chatApiConfigs: { suggestionsApiConfig: { forwardedParams: { max_tokens: 5, stop: ["\n", ".", ","], }, }, insertionApiConfig: {}, }, debounceTime: 250, }} /> ``` 然後將Tailwindcss隱藏類別加入文章內容的Textarea中,如下所示。文字區域將保存文章的內容,並在文章發布後將其插入資料庫。 ``` {/* Textarea for article content */} <textarea className="p-4 w-full aspect-square font-bold text-xl bg-slate-800 text-white rounded-lg resize-none hidden" id="content" name="content" value={copilotText} placeholder="Write your article content here" onChange={(event) => setCopilotText(event.target.value)} /> ``` 之後,請前往`/[root]/src/app/writearticle/page.tsx`檔案並使用下面的程式碼匯入頂部的 CopilotKit 前端套件和樣式。 ``` import { CopilotKit } from "@copilotkit/react-core"; import { CopilotSidebar } from "@copilotkit/react-ui"; import "@copilotkit/react-ui/styles.css"; import "@copilotkit/react-textarea/styles.css"; ``` 然後使用`CopilotKit`和`CopilotSidebar`包裹Article元件,如下所示。 `CopilotKit`元件指定 CopilotKit 後端端點 ( `/api/copilotkit/openai/` ) 的 URL,而`CopilotSidebar`則呈現應用程式內聊天機器人,您可以提示您研究文章的任何主題。 ``` export default function WriteArticle() { return ( <> <Header /> <CopilotKit url="/api/copilotkit"> <CopilotSidebar instructions="Help the user research a blog article topic." defaultOpen={true} labels={{ title: "Blog Article Copilot", initial: "Hi you! 👋 I can help you research any topic for a blog article.", }} clickOutsideToClose={false}> <Article /> </CopilotSidebar> </CopilotKit> </> ); } ``` 之後,執行開發伺服器並導航到 http://localhost:3000/writearticle。您應該會看到應用程式內聊天機器人已整合到部落格平台中。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/yx7m6fhxm9gdg942a0sq.png) 給右側的聊天機器人一個提示,例如“研究一篇關於生成人工智慧的部落格文章主題,然後給我文章大綱。”聊天機器人將開始研究該主題,然後產生部落格標題。 當您開始在編輯器上寫作時,您應該會看到內容自動建議,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ocnhptqxnk5gopvlzfs8.png) **將部落格平台與 Supabase 資料庫集成** -------------------------- 在本節中,我將引導您完成將部落格平台與 Supabase 資料庫整合以插入和獲取部落格文章資料的過程。 首先,導覽至[supabase.com](http://supabase.com)並點擊主頁上的「啟動您的專案」按鈕。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/95n06a6aj55r5w959gz6.png) 然後新建一個專案,名為AiBloggingPlatform,如下圖所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/lifhztowgy3g1v9wwnjk.png) 建立專案後,將 Supabase URL 和 API 金鑰新增至 env.local 檔案中的環境變數中,如下所示。 ``` NEXT_PUBLIC_SUPABASE_URL=”Your Supabase URL” NEXT_PUBLIC_SUPABASE_ANON_KEY=”Your Supabase API Key” ``` 之後,請前往 Supabase 上專案的儀表板並開啟 SQL 編輯器部分。然後將下列 SQL 程式碼新增至編輯器中,然後按一下 CTRL + Enter 鍵建立一個名為articles 的表。文章表包含 id、標題和內容行。 ``` create table if not exists articles ( id bigint primary key generated always as identity, title text, content text ); ``` 建立表格後,您應該會收到一條成功訊息,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/bjb84czwivk6ue7duj0b.png) 之後,轉到`/[root]/src/`資料夾並建立一個名為`utils`的資料夾。在`utils`資料夾內,建立一個名為`supabase.ts`文件,並新增以下用於建立並傳回 Supabase 用戶端的程式碼。 ``` // Importing necessary functions and types from the Supabase SSR package import { createServerClient, type CookieOptions } from '@supabase/ssr' // Define a function named 'supabase' that takes a 'CookieOptions' object as input export const supabase = (cookies: CookieOptions) => { // Retrieve cookies from the provided 'CookieOptions' object const cookieStore = cookies() // Create and return a Supabase client configured with environment variables and cookie handling return createServerClient( // Retrieve Supabase URL from environment variables process.env.NEXT_PUBLIC_SUPABASE_URL!, // Retrieve Supabase anonymous key from environment variables process.env.NEXT_PUBLIC_SUPABASE_ANON_KEY!, { cookies: { // Define a custom 'get' function to retrieve cookies by name from the cookie store get(name: string) { return cookieStore.get(name)?.value }, }, } ) } ``` 然後轉到`/[root]/src/app`資料夾並建立一個名為`serveractions`的資料夾。在`serveractions`資料夾中,建立一個名為`AddArticle.ts`的文件,並新增以下程式碼,將部落格文章資料插入到 Supabase 資料庫中。 ``` // Importing necessary functions and modules for server-side operations "use server"; import { createServerComponentClient } from "@supabase/auth-helpers-nextjs"; import { cookies } from "next/headers"; import { redirect } from "next/navigation"; // Define an asynchronous function named 'addArticle' that takes form data as input export async function addArticle(formData: any) { // Extract title and content from the provided form data const title = formData.get("title"); const content = formData.get("content"); // Retrieve cookies from the HTTP headers const cookieStore = cookies(); // Create a Supabase client configured with the provided cookies const supabase = createServerComponentClient({ cookies: () => cookieStore }); // Insert the article data into the 'articles' table on Supabase const { data, error } = await supabase.from("articles").insert([ { title, content, }, ]); // Check for errors during the insertion process if (error) { console.error("Error inserting data", error); return; } // Redirect the user to the home page after successfully adding the article redirect("/"); // Return a success message return { message: "Success" }; } ``` 之後,轉到`/[root]/src/app/components/Article.tsx`檔案並導入`addArticle`函數。 ``` import { addArticle } from "../serveractions/AddArticle"; ``` 然後加入`addArticle`函數作為表單動作參數,如下所示。 ``` // Form element for article input <form action={addArticle} className="w-full h-full gap-10 flex flex-col items-center p-10"> </form> ``` 之後,導覽至http://localhost:3000/writearticle,研究您選擇的主題,新增文章內容,然後點擊底部的發布按鈕來發布文章。 然後轉到 Supabase 上專案的儀表板並導航到表編輯器部分。您應該會看到您的文章資料已插入 Supabase 資料庫,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/fklcuyv5q5eq1ajmdjyv.png) 接下來,前往`/[root]/src/app/page.tsx`檔案並在頂部導入 cookie 和 supabase 套件。 ``` import { cookies } from "next/headers"; import { supabase } from "@/utils/supabase"; ``` 然後在 Home 函數中加入以下程式碼,從 Supabase 資料庫中取得文章資料。 ``` const { data: articles, error } = await supabase(cookies).from('articles').select('*') ``` 之後,更新如下所示的元素程式碼,以將已發佈的文章呈現在部落格平台主頁上。 ``` return ( <> <Header /> <div className="max-w-[85rem] h-full px-4 py-10 sm:px-6 lg:px-8 lg:py-14 mx-auto"> <div className="grid sm:grid-cols-2 lg:grid-cols-3 gap-6"> {articles?.map((post: any) => ( <Link key={post.id} className="group flex flex-col h-full bg-white border border-gray-200 hover:border-transparent hover:shadow-lg transition-all duration-300 rounded-xl p-5 " href={`/posts/${post.id}`}> <div className="aspect-w-16 aspect-h-11"> <Image className="object-cover h-48 w-96 rounded-xl" src={`https://source.unsplash.com/featured/?${encodeURIComponent( post.title )}`} width={500} height={500} alt="Image Description" /> </div> <div className="my-6"> <h3 className="text-xl font-semibold text-gray-800 "> {post.title} </h3> </div> </Link> ))} </div> </div> </> ); ``` 然後導航到[http://localhost:3000](http://localhost:3000/writearticle) ,您應該會看到您發布的文章,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/429bilwyje2a4xh0il5n.png) 之後,轉到`/[root]/src/app`資料夾並建立一個名為`[id].`在`[id]`資料夾中,建立一個名為`page.tsx`的文件,並在頂部匯入以下套件和元件。 ``` import { supabase } from '@/utils/supabase'; import { cookies } from "next/headers"; import Header from '@/app/components/Header'; ``` 在導入下面,定義一個名為「getArticles」的非同步函數,該函數根據 id 參數從 supabase 資料庫檢索文章資料,如下所示。 ``` // Define an asynchronous function named 'getArticles' that retrieves article data based on the provided parameters async function getArticles(params: any) { // Extract the 'id' parameter from the provided 'params' object const { id } = params // Retrieve article data from Supabase database where the 'id' matches the provided value const { data, error } = await supabase(cookies) .from('articles') .select('*') .eq('id', id) .single(); // Return the retrieved data return data } ``` 在上面的程式碼下面,定義一個名為“Post”的函數,它將“params”作為 props,如下所示。 ``` // Define a default asynchronous function named 'Post' that takes 'params' as props export default async function Post({ params }: { params: any }) { // Retrieve the post data asynchronously based on the provided 'params' const post = await getArticles(params); // Return JSX to render the post details return ( <> {/* Render the header component */} <Header /> {/* Main content wrapper */} <div className="max-w-3xl px-4 pt-6 lg:pt-10 pb-12 sm:px-6 lg:px-8 mx-auto"> <div className="max-w-2xl"> <div className="space-y-5 md:space-y-8"> <div className="space-y-3"> {/* Render the post title */} <h2 className="text-2xl font-bold md:text-3xl dark:text-white"> {/* Render the post title only if 'post' is truthy */} {post && post.title} </h2> {/* Render the post content */} <p className="text-lg text-gray-800 dark:text-gray-200"> {/* Render the post content only if 'post' is truthy */} {post && post.content} </p> </div> </div> </div> </div> </> ); } ``` 之後,導覽至[http://localhost:3000](http://localhost:3000/writearticle)並點擊部落格平台主頁上顯示的文章。 然後您應該被重定向到文章的內容,如下所示。 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ojie4iwb8qn56gd2a907.png) 結論 -- 總而言之,您可以使用 CopilotKit 建立應用內 AI 聊天機器人,該機器人可以查看當前應用程式狀態並在應用程式內執行操作。 AI 聊天機器人可以與您的應用程式前端、後端和第三方服務對話。 完整的原始碼:https://github.com/TheGreatBonnie/aipoweredblog --- 原文出處:https://dev.to/copilotkit/how-to-build-an-ai-powered-blogging-platform-nextjs-langchain-supabase-1hdp

21 個正在改變世界的人工智慧工具

世界上充滿了有前景的人工智慧工具,如 Sora、ChatGPT 以及更多即將推出的工具。 我收集了一些你必須使用的令人興奮的人工智慧工具。 該清單包括 Devin AI 的開源替代品、Notion、5 秒內的語音克隆、電子郵件自動化軟體以及您從未聽說過的工具。好奇心超載! 別忘了給他們加星號🌟 讓我們涵蓋這一切! --- 1. [Taipy](https://github.com/Avaiga/taipy) - 將資料和人工智慧演算法整合到生產就緒的 Web 應用程式中。 ---------------------------------------------------------------------------- ![打字](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/deak7rre409rzv5j5viv.png) Taipy 是一個開源 Python 庫,可用於輕鬆的端到端應用程式開發,具有假設分析、智慧管道執行、內建調度和部署工具。 我相信你們大多數人都不明白 Taipy 用於為基於 Python 的應用程式建立 GUI 介面並改進資料流管理。 因此,您可以繪製資料集的圖表,並使用類似 GUI 的滑桿來提供使用其他實用功能來處理資料的選項。 雖然 Streamlit 是一種流行的工具,但在處理大型資料集時,其效能可能會顯著下降,這使得它在生產級使用上不切實際。 另一方面,Taipy 在不犧牲性能的情況下提供了簡單性和易用性。透過嘗試 Taipy,您將親身體驗其用戶友好的介面和高效的資料處理。 在底層,Taipy 利用各種函式庫來簡化開發並增強功能。 ![圖書館](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/n9xts3nof4uapr7dakrl.png) 開始使用以下命令。 ``` pip install taipy ``` 我們來談談最新的[Taipy v3.1 版本](https://docs.taipy.io/en/latest/relnotes/)。 最新版本使得在 Taipy 的多功能零件物件中可視化任何 HTML 或 Python 物件成為可能。 這意味著[Folium](https://python-visualization.github.io/folium/latest/) 、 [Bokeh](https://bokeh.org/) 、 [Vega-Altair](https://altair-viz.github.io/)和[Matplotlib](https://matplotlib.org/)等程式庫現在可用於視覺化。 這也帶來了對[Plotly python](https://plotly.com/python/)的原生支持,使繪製圖表變得更加容易。 ![陰謀蟒蛇](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/xdewvex88md09hvu3s80.png) 他們還使用分散式運算提高了效能,但最好的部分是 Taipy,它的所有依賴項現在都與 Python 3.12 完全相容,因此您可以在使用 Taipy 進行專案的同時使用最新的工具和程式庫。 您可以閱讀[文件](https://docs.taipy.io/en/latest/)。 例如,您可以看到[聊天演示](https://docs.taipy.io/en/release-3.1/gallery/llm/5_chatbot/),它使用 OpenAI 的 GPT-4 API 來產生對您的訊息的回應。您可以輕鬆更改程式碼以使用任何其他 API 或模型。 ![聊天演示](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kug1mclhmzyad0hjchif.png) 另一個有用的事情是,Taipy 團隊提供了一個名為[Taipy Studio](https://docs.taipy.io/en/latest/manuals/studio/)的 VSCode 擴充功能來加速 Taipy 應用程式的建置。 ![太皮工作室](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kc1umm5hcxes0ydbuspb.png) 您也可以使用 Taipy 雲端部署應用程式。 如果您想閱讀部落格來了解程式碼庫結構,您可以閱讀 HuggingFace[的使用 Taipy 在 Python 中為您的 LLM 建立 Web 介面](https://huggingface.co/blog/Alex1337/create-a-web-interface-for-your-llm-in-python)。 嘗試新技術通常很困難,但 Taipy 提供了[10 多個演示教程,](https://docs.taipy.io/en/release-3.1/gallery/)其中包含程式碼和適當的文件供您遵循。 例如,一些現場演示範例和專案想法: - [新冠儀表板](https://covid-dashboard.taipy.cloud/Country) - [推文生成](https://tweet-generation.taipy.cloud/) - [資料視覺化](https://production-planning.taipy.cloud/Data-Visualization) - [即時人臉辨識](https://face-recognition.taipy.cloud/) - [國際象棋大師](https://github.com/KorieDrakeChaney/taipy-chess) Taipy 在 GitHub 上有 7k+ Stars,並且處於`v3`版本,因此它們正在不斷改進。 https://github.com/Avaiga/taipy Star Taipy ⭐️ --- 2. [PR Agent](https://github.com/Codium-ai/pr-agent) - 自動拉取請求分析、回饋、建議的工具。 ------------------------------------------------------------------------- ![公關代理](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/6sq9u9ktdhdu4pax9u7i.gif) 這是一個開源工具,可幫助有效地審查和處理拉取請求。它有許多獨特的選項,並提供跨各種 git 提供者的廣泛的拉取請求功能。 每天有數百萬個開源專案和數百個 Pull 請求,因此有一個可以幫助您的朋友是非常好的事情。 我是開源維護者,所以我知道有時會變得多麼困難,特別是每天都要審查這麼多的 Pull 請求。 無論如何,這就是公關代理商的幕後工作方式。 ![建築學](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/0kkd9vxxqhu99f2elv8c.png) 您必須使用`@CodiumAI-Agent /review`對拉取請求發表評論,代理商將透過對 PR 的審查進行回應。有很多可用的選項,例如`describe`和`improve` 。 他們也提供了 [PR-Agent 工具](https://pr-agent-docs.codium.ai/tools/),每個頁面都有一個專門的頁面來解釋如何使用它。 您可以閱讀[文件](https://pr-agent-docs.codium.ai/installation/)並查看[範例結果](https://github.com/Codium-ai/pr-agent?tab=readme-ov-file#example-results)。 最好的部分是您甚至可以將其作為[GitHub Action](https://pr-agent-docs.codium.ai/installation/github/#run-as-a-github-action)執行。他們還提供了一個專業版本,有更多的選擇,但免費套餐足以開始使用。 如果您正在尋找好的文章,我推薦[使用 CodiumAI PR-Agent 自動進行拉取請求審查和](https://rnemet.dev/posts/ai/codium-pragent/)[CodiumAI PR-Agent 讓開發人員的生活更輕鬆的 5 個原因](https://medium.com/@mengineer/5-reasons-why-codiumai-pr-agent-is-making-developers-lives-easier-e040be0f6a36)。這些提供了有關 PR Agent 的大量概述。 它們在 GitHub 上有大約 3800 個 Star,被 300 多名開發人員使用,並且是使用 Python 建構的。雖然它們可能不是非常受歡迎,但它們的用例非常好。 https://github.com/Codium-ai/pr-agent 明星公關代理人 ⭐️ --- 3. [Mintlify](https://github.com/mintlify/writer) - 在建置時出現的文件。 -------------------------------------------------------------- ![精簡](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/gvk07kmn8p48cpssogov.png) Mintlify 是一款由人工智慧驅動的文件編寫器,您只需 1 秒鐘即可編寫程式碼文件 :D 幾個月前我發現了 Mintlify,從那時起我就一直是它的粉絲。我見過很多公司使用它,甚至我使用我的商務電子郵件產生了完整的文件,結果證明這是非常簡單和體面的。如果您需要詳細的文件,Mintlify 就是解決方案。 另一個用例是根據我們將在這裡討論的程式碼產生文件。 您可以安裝[VSCode 擴充功能](https://marketplace.visualstudio.com/items?itemName=mintlify.document)或將其安裝在[IntelliJ](https://plugins.jetbrains.com/plugin/18606-mintlify-doc-writer)上。 您只需突出顯示程式碼或將遊標放在要記錄的行上。然後點選「編寫文件」按鈕(或按 ⌘ + 。) 您可以閱讀[文件](https://github.com/mintlify/writer?tab=readme-ov-file#%EF%B8%8F-mintlify-writer)和[安全指南](https://writer.mintlify.com/security)。 如果您更喜歡教程,那麼您可以觀看[Mintlify 的工作原理](https://www.loom.com/embed/3dbfcd7e0e1b47519d957746e05bf0f4)。它支援 10 多種程式語言,並支援許多文件字串格式,例如 JSDoc、reST、NumPy 等。 順便說一句,他們的網站連結是[writer.mintlify.com](https://writer.mintlify.com/) ;回購協議中目前的似乎是錯誤的。 它在 GitHub 上有大約 2.4k 顆星,受到許多開發人員的喜愛,並且是使用 TypeScript 建構的。 https://github.com/mintlify/writer Star Mintlify ⭐️ --- 4.[螢幕截圖到程式碼](https://github.com/abi/screenshot-to-code)- 放入螢幕截圖並將其轉換為乾淨的程式碼。 --------------------------------------------------------------------------- ![截圖到程式碼](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5akiyz5telxqqsj32ftu.png) 這是一個非常受歡迎的開源專案,但我可以肯定地說,很多開發人員仍然沒有意識到這一點。使用此功能,您可以將使用者介面的建置速度提高 10 倍。 這是一個簡單的工具,可以使用 AI 將螢幕截圖、模型和 Figma 設計轉換為乾淨、實用的程式碼。 該應用程式有一個 React/Vite 前端和一個 FastAPI 後端。如果您想使用 Claude Sonnet 或實驗性視訊支持,您將需要一個能夠存取 GPT-4 Vision API 的 OpenAI API 金鑰或一個 Anthropic 金鑰。您可以閱讀[指南](https://github.com/abi/screenshot-to-code?tab=readme-ov-file#-getting-started)來開始。 您可以在託管版本上[即時試用](https://screenshottocode.com/),並觀看 wiki 上提供的[一系列演示影片](https://github.com/abi/screenshot-to-code/wiki/Screen-Recording-to-Code)。 他們在 GitHub 上擁有超過 47k 顆星星,並支援許多技術堆疊,例如 React 和 Vue,以及不錯的 AI 模型,例如 GPT-4 Vision、Claude 3 Sonnet 和 DALL-E 3。 https://github.com/abi/screenshot-to-code 將螢幕截圖轉為程式碼 ⭐️ --- 5. [FaceSwap](https://github.com/deepfakes/faceswap) - 適合所有人的 Deepfakes 軟體。 --------------------------------------------------------------------------- ![換臉](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ps8nidwchglscdrk0117.png) 我總是對 Deepfakes 著迷,因為這就是某些人工智慧的工作原理,尤其是使用影片的人工智慧。 相信我!我們中的許多人甚至不使用它來建立影片,我們只是修改程式碼來看看它的作用,不道德的使用並不能代表它的建立原因、我們現在如何使用它,或者我們對它的未來的看法。 您應該觀看此影片以了解電腦如何辨識臉!觀看[此影片](https://www.youtube.com/watch?v=aircAruvnKk)以了解神經網路的基本功能。 https://www.youtube.com/watch?v=R9OHn5ZF4Uo 您可以閱讀[INSTALL.md](https://github.com/deepfakes/faceswap/blob/master/INSTALL.md)以取得詳細的安裝指南。根據文件,您需要具有 CUDA 支援的現代 GPU 才能獲得最佳效能。許多 AMD GPU 透過 DirectML (Windows) 和 ROCm (Linux) 支援。 您可以閱讀<a href="">文件</a>、觀看[演示影片](https://www.dailymotion.com/video/x810mot)並存取他們的[部落格](https://faceswap.dev/blog/)以觀看具有其他用例的會議影片。 我最喜歡的事實是,他們有一個非常簡單的部分,介紹任何人如何為該專案做出貢獻,包括對生成模型感興趣的人、開發人員、非開發高級用戶、最終用戶,當然還有討厭者:) 他們在 GitHub 上有 48k+ Stars,這使得他們足夠可信。 https://github.com/deepfakes/faceswap 明星 FaceSwap ⭐️ --- 6. [Amica](https://github.com/semperai/amica) - 讓您可以在瀏覽器中輕鬆地與 3D 角色聊天。 ---------------------------------------------------------------------- ![朋友](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/2nvizcn717h3cteocft5.png) Amica 是一個開源接口,用於透過語音合成和語音辨識與 3D 角色進行互動式通訊。 您可以匯入 VRM 文件,調整聲音以適合角色,並產生包含情緒表達的回應文字。 他們使用 Three.js、OpenAI、Whisper、Bakllava 等進行視覺處理。您可以閱讀[Amica 的工作原理](https://docs.heyamica.com/overview/how-amica-works)及其所涉及的[核心概念](https://docs.heyamica.com/overview/core-concepts)。 您可以克隆該存儲庫並使用它來[開始](https://docs.heyamica.com/getting-started/installation)。 ``` npm i npm run dev ``` 您可以閱讀[文件](https://docs.heyamica.com/)並查看[演示](https://amica.arbius.ai/),這真是太棒了:D ![示範](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/92iv9y2auly6tvenee82.png) 您可以觀看這段簡短的影片,了解它的功能。 https://www.youtube.com/watch?v=hUxAEnFiXH8 Amica 使用 Tauri 建立桌面應用程式。 他們在 GitHub 上有 400+ Stars,而且看起來非常容易使用。 https://github.com/semperai/amica Star Amica ⭐️ --- 7. [Bark](https://github.com/suno-ai/bark) - 文字提示的生成音訊模型。 --------------------------------------------------------- ![吠](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/pt8h5filcsk9pcxsx0ky.png) Bark 是 Suno 建立的基於轉換器的文本到音訊模型。 Bark 可以產生高度逼真的多語言語音以及其他音訊 - 包括音樂、背景噪音和簡單的音效。 該模型還可以產生非語言交流,如笑、嘆息和哭泣。哇! 它擁有 MIT 許可證,這意味著它現在可用於商業用途。 Bark 支援超過 100 種語言的揚聲器預設。您可以[在此處](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)查看支援的語音預設庫。 根據文件,Bark 嘗試匹配給定預設的語氣、音高、情緒和韻律,但目前不支援自訂語音複製。該模型還嘗試保留音樂、環境噪音等。這超出了任何人的需要。 您可以這樣使用它。如果您想將其與 Transformers 庫一起使用,請閱讀[本文](https://github.com/suno-ai/bark?tab=readme-ov-file#-transformers-usage)。 ``` from bark import SAMPLE_RATE, generate_audio, preload_models from scipy.io.wavfile import write as write_wav from IPython.display import Audio # download and load all models preload_models() # generate audio from text text_prompt = """ Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe. """ audio_array = generate_audio(text_prompt) # save audio to disk write_wav("bark_generation.wav", SAMPLE_RATE, audio_array) # play text in notebook Audio(audio_array, rate=SAMPLE_RATE) ``` Bark 開箱即用支援各種語言,並自動根據輸入文字確定語言。當提示使用程式碼轉換文字時,Bark 將嘗試使用相應語言的本地口音。 您可以在[Google Colab](https://colab.research.google.com/drive/1eJfA2XUa-mXwdMy7DoYKVYHI1iTd9Vkt?usp=sharing) & [Replicate](https://replicate.com/suno-ai/bark)閱讀<a href="">文件</a>並查看演示。 您也可以在筆記本部分閱讀有關語音一致性增強和其他形式的[範例](https://github.com/suno-ai/bark/tree/main/notebooks)。 ![聲音](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/zirh2dimya9yt8p0e7ry.png) 它們支援多種語言,如英語、印地語、德語、法語等。 他們在 GitHub 上擁有 30k+ Stars,並且經營超過 300,000 人的社區,這使他們成為值得選擇的選擇。 https://github.com/suno-ai/bark 星樹 ⭐️ --- 8. [GPTDiscord](https://github.com/Kav-K/GPTDiscord) - Discord 的一體化 GPT 介面。 --------------------------------------------------------------------------- ![概述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kknaijkgi2rr7b0kefo7.png) 我是 Discord 上多個社群的成員,具有出色用例的機器人可以改善整體最終用戶體驗。 這個機器人的功能與 ChatGPT 網路相當,甚至在某些事情上做得更好! 它們支援一切,從多模態圖像理解、程式碼解釋、高級資料分析、文件問答、與 Wolfram Alpha 的網路連接聊天和 Google 存取、AI 審核、使用 DALL-E 生成圖像等等! 您可以閱讀 GPTDiscord 的所有高效[功能](https://github.com/Kav-K/GPTDiscord?tab=readme-ov-file#features)。 您可以閱讀[安裝指南](https://github.com/Kav-K/GPTDiscord/blob/main/detailed_guides/INSTALLATION.md)。 您可以查看[螢幕截圖](https://github.com/Kav-K/GPTDiscord?tab=readme-ov-file#screenshots)並查看不同目的的[詳細指南](https://github.com/Kav-K/GPTDiscord/tree/main/detailed_guides)清單。 他們在 GitHub 上有大約 1.8k+ Stars,而且肯定在進步。 https://github.com/Kav-K/GPTDiscord 星 GPTDiscord ⭐️ --- 9. [Upscayl](https://github.com/upscayl/upscayl) - 開源 AI 影像擴大機。 --------------------------------------------------------------- ![高級](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/2c1837rev5jb260ro2sd.png) 適用於 Linux、MacOS 和 Windows 的免費開源 AI Image Upscaler 採用 Linux 優先概念建構。 它可能與全端無關,但它對於升級圖像很有用。 ![高級](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9vyo1eqfz3hh0rg3lmkz.png) ![高級](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/a4qq1wm3wey3vihn9al4.png) 透過最先進的人工智慧,Upscayl 可以幫助您將低解析度影像變成高解析度。清脆又鋒利! 您可以閱讀[安裝指南](https://github.com/upscayl/upscayl?tab=readme-ov-file#-installation),並查看 Upscayl 之前/之後的[比較](https://github.com/upscayl/upscayl/blob/main/COMPARISONS.MD)。 ![比較](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/3f14g2vv58ljhayluh8l.png) 它在 GitHub 上有 23k+ Stars,並且基於 TypeScript 建置。 https://github.com/upscayl/upscayl 明星 Upscayl ⭐️ --- 10. [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) - Notion 的開源替代品。 ------------------------------------------------------------------------ ![應用程式串流](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/dovisje3bh7ec1h9uqau.png) AppFlowy 是一個由人工智慧驅動的安全工作空間,類似於您在不失去資料控制的情況下實現更多目標的概念。 ![產品](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ul096wqbsxrs8shvwp6c.png) 他們還提供行動應用程式,這是一個優點。 您可以閱讀[文件](https://docs.appflowy.io/docs)並了解[安裝方法](https://docs.appflowy.io/docs/appflowy/install-appflowy/installation-methods)。 他們還支援[使用 Supabase 自託管 AppFlowy](https://docs.appflowy.io/docs/guides/appflowy) 。對於喜歡 Supabase 功能或使用 Supabase 作為其基礎設施的用戶來說,這是理想的選擇。 您還應該檢查[此內容](https://docs.appflowy.io/docs/appflowy/product/data-storage)以了解有關資料儲存、Markdown、捷徑、主題、涉及的人工智慧和插件的更多資訊。 AppFlowy 在 GitHub 上擁有超過 47,000 顆星,發布了 64 個以上版本。 https://github.com/AppFlowy-IO/AppFlowy 明星 AppFlowy ⭐️ --- 11. [Leon](https://github.com/leon-ai/leon) - 您的開源個人助理。 ------------------------------------------------------- ![萊昂](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/mnv85osce6ps9xodf07t.png) Leon 是一個開源個人助理,可以駐留在您的伺服器上。 當你要求他做事時,他就會做事。 你可以跟他說話,他也可以跟你說話。你也可以給他發短信,他也可以傳簡訊給你。如果您願意,Leon 可以透過離線方式與您溝通,以保護您的隱私。這是萊昂目前可以做的[技能](https://github.com/leon-ai/leon/tree/develop/skills)清單。 你應該讀一下[萊昂背後的故事](https://blog.getleon.ai/the-story-behind-leon/)。您還可以觀看此演示以了解有關 Leon 的更多資訊。 https://www.youtube.com/watch?v=p7GRGiicO1c ![特徵](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/70mddmgadcbfwzugd1bl.png) 這是Leon的高層架構模式。 ![建築學](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/a6b9vgj3fagera0bsyur.png) 這是開始使用 npm 指令的方法。 ``` # install leon global cli npm install --global @leon-ai/cli # install leon leon create birth ``` 您可以閱讀[文件](https://docs.getleon.ai/)。 它在 GitHub 上擁有超過 14k 顆星,並且還在不斷增長。 https://github.com/leon-ai/leon 明星萊昂 ⭐️ --- 12. [n8n](https://github.com/n8n-io/n8n) - 工作流程自動化工具。 ----------------------------------------------------- ![n8n](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4pqsc84nhgj0b9dhfaxo.png) n8n 是一個可擴展的工作流程自動化工具。透過公平程式碼分發模型,n8n 將始終擁有可見的原始程式碼,可用於自託管,並允許您加入自訂函數、邏輯和應用程式。 ![n8n](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/rxnp57kw5szbpj6mfs1p.png) n8n 基於節點的方法使其具有高度通用性,使您能夠將任何事物連接到任何事物。 有[400 多個集成選項](https://n8n.io/integrations),這幾乎是瘋狂的! 您可以看到所有[安裝](https://docs.n8n.io/choose-n8n/)選項,包括 Docker、npm 和自架。 開始使用以下命令。 ``` npx n8n ``` 此命令將下載啟動 n8n 所需的所有內容。然後,您可以透過開啟`http://localhost:5678`來存取 n8n 並開始建置工作流程。 在 YouTube 上觀看此[快速入門影片](https://www.youtube.com/watch?v=1MwSoB0gnM4)! https://www.youtube.com/watch?v=1MwSoB0gnM4 您可以閱讀[文件](https://docs.n8n.io/)並閱讀本[指南](https://docs.n8n.io/try-it-out/),以便根據您的需求快速開始。 他們還提供初學者和中級[課程,](https://docs.n8n.io/courses/)以便輕鬆學習。 他們在 GitHub 上有 39k+ Stars,並提供兩個包供整體使用。 https://github.com/n8n-io/n8n 明星 n8n ⭐️ --- 13. [Quivr](https://github.com/QuivrHQ/quivr) - 你的 GenAI 第二腦。 ------------------------------------------------------------- ![奎弗爾](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/hl12fl88mdjmfkfath1t.png) Quivr,您的第二個大腦,利用 GenerativeAI 的力量成為您的私人助理!可以將其視為黑曜石,但增強了人工智慧功能。 ![統計資料](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5a27c2ubbmri0b2xlh1l.png) 您可以閱讀[安裝指南](https://github.com/QuivrHQ/quivr?tab=readme-ov-file#getting-started-)。 您可以閱讀[文件](https://docs.quivr.app/home/intro)並觀看[示範影片](https://github.com/QuivrHQ/quivr?tab=readme-ov-file#demo-highlights-)。 他們可以提供更好的免費套餐,但這足以在您端進行測試。 它在 GitHub 上擁有超過 30k 顆星,發布了 220 多個版本,這意味著它們正在不斷改進。 https://github.com/QuivrHQ/quivr Star Quivr ⭐️ --- 14. [meilisearch](https://github.com/meilisearch/meilisearch) - 適合您的應用程式、網站和工作流程的搜尋 API。 ---------------------------------------------------------------------------------------- ![搜尋](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/s1rm66br9fbsa76n2e8i.png) Meilisearch 可協助您快速打造令人愉悅的搜尋體驗,提供開箱即用的功能來加快您的工作流程。 您一定看過可以使用`Ctrl + k`搜尋文件的軟體網站,例如 GitHub 或 Appwrite。那麼,meilisearch 可以幫助您實現相同的功能。 與 Algolia、Typesense 和 Elasticsearch 相比,這是唯一基於 Rust 建構的。您可以閱讀有關可用替代選項的[比較](https://www.meilisearch.com/docs/learn/what_is_meilisearch/comparison_to_alternatives):) Meilisearch 不應該是您的主要資料儲存。它是一個搜尋引擎,而不是一個資料庫。 Meilisearch 應僅包含您希望使用者搜尋的資料。如果您必須加入與搜尋無關的資料,請務必使這些字段不可搜尋,以提高相關性並縮短響應時間。 無論您是在開發網站還是應用程式,Meilisearch 都能提供直覺的即輸入即搜尋體驗,回應時間低於 50 毫秒。 他們提供[SDK 和庫,](https://www.meilisearch.com/docs/learn/what_is_meilisearch/sdks?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=sdks-link)用於 Meilsearch 和您喜歡的語言或框架之間的無縫整合。相信我,選擇的數量是瘋狂的。 他們還提供了一個[抓取工具](https://github.com/meilisearch/docs-scraper)來自動讀取文件內容並將其儲存到Meilisearch。 他們展示了許多[有用的功能](https://www.meilisearch.com/docs/learn/what_is_meilisearch/overview#features),例如即使查詢包含拼寫錯誤和拼寫錯誤(他們將其稱為`typo tolerance` ,您也可以獲得相關匹配。 有很多可用的選項,但讓我們看看如何使用 React 來做到這一點。 開始使用以下命令。 ``` yarn add react-instantsearch @meilisearch/instant-meilisearch # or npm install react-instantsearch @meilisearch/instant-meilisearch # or pnpm add react-instantsearch @meilisearch/instant-meilisearch ``` 您可以這樣使用它。 ``` import React from 'react'; import { InstantSearch, SearchBox, Hits, Highlight } from 'react-instantsearch'; import { instantMeiliSearch } from '@meilisearch/instant-meilisearch'; const { searchClient } = instantMeiliSearch( 'https://ms-adf78ae33284-106.lon.meilisearch.io', 'a63da4928426f12639e19d62886f621130f3fa9ff3c7534c5d179f0f51c4f303' ); const App = () => ( <InstantSearch indexName="steam-video-games" searchClient={searchClient} > <SearchBox /> <Hits hitComponent={Hit} /> </InstantSearch> ); const Hit = ({ hit }) => <Highlight attribute="name" hit={hit} />; export default App ``` 您可以查看此[codesandbox](https://codesandbox.io/p/sandbox/eager-dust-f98w2w)以取得詳細的範例以開始使用。 正如我所說,他們在幕後提供了很多東西。例如,您可以使用這些。 ``` npm install @meilisearch/autocomplete-client npm install @meilisearch/instant-meilisearch npm install meilisearch-docsearch ``` `meilisearch docsearch`的靈感來自 Algolia 搜尋文件元件。另外,非常詳細的文件以及每個 sdk 的範例和選項使它們成為人們的最愛。 您可以閱讀[文件](https://www.meilisearch.com/docs)並觀看[現場演示](https://where2watch.meilisearch.com/?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=demo-link)。 ![社區統計](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/cxou5qe4p0va0h8r52ti.png) 他們在 GitHub 上有超過 42k 顆星,並且`v1.7`版本有 180 多個版本。 https://github.com/meilisearch/meilisearch 星 meilisearch ⭐️ --- 15.[收件匣清除](https://github.com/elie222/inbox-zero)- 幾分鐘內清理您的收件匣。 --------------------------------------------------------------- ![收件匣為零](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/jz1krkg9btykpfoiuukd.png) 收件匣歸零是一款開源電子郵件應用程式,其目標是透過 AI 協助幫助您快速實現收件匣歸零。 它們得到了谷歌的批准,因此這是關注隱私的一個很好的部分。 ![經谷歌批准](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9fidgtozaj9y4feo4bbq.png) 它們使用 Postgres 作為資料庫,並基於 TypeScript 建置。 它們有一些瘋狂的功能,例如: > 您的電子郵件人工智慧助理 1. 人工智慧代理將讓您根據您提供的規則自動回覆、轉發或存檔電子郵件。 2. 他們的人工智慧計畫可以幫助你點擊接受或拒絕。一旦您確信人工智慧可以獨立工作,就可以開啟完全自動化。 3. 您可以用簡單的英語進行指導。就像與助手交談或向 ChatGPT 發送提示一樣簡單。 > 您可以自動封鎖冷電子郵件 您可以告訴「收件匣零」什麼對您來說構成冷郵件。它將根據您的指示阻止它們。 > 分析 了解收件匣是處理它的第一步。了解您的收件匣裡裝滿了什麼。它們還為您提供了立即採取行動的方法。 您可以閱讀核心[功能](https://github.com/elie222/inbox-zero?tab=readme-ov-file#key-features)並觀看[演示影片](https://github.com/elie222/inbox-zero?tab=readme-ov-file#demo-video)。您還可以查看他們的[看板](https://github.com/users/elie222/projects/1/views/1)以了解計劃內容。 他們在 GitHub 上擁有超過 1,500 個 Star,並且絕對值得更多。 https://github.com/elie222/inbox-zero 星收件匣零 ⭐️ --- 16. [Lively](https://github.com/rocksdanister/lively) - 允許使用者設定動畫桌面桌布和螢幕保護程式。 ----------------------------------------------------------------------------- ![活潑](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/60tld1a857herh12r5ci.png) 這只是為了好玩,我們可以使用程式碼學到很多關於它是如何完成的。 你可以看看這個[影片](https://www.pexels.com/video/blue-texture-abstract-leaves-7710243/),看看它看起來有多瘋狂。 ![風俗](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/kb2ll571uc2jd2xrpmph.png) 他們提供[三種類型的壁紙,](https://github.com/rocksdanister/lively?tab=readme-ov-file#types-of-wallpapers)包括影片/GIF、網頁和應用程式/遊戲。 它基於 C# 和 live 支援的一些很酷的功能建置: 1. Lively 可以透過終端機的[命令列參數](https://github.com/rocksdanister/lively/wiki/Command-Line-Controls)進行控制。您可以將其與其他語言(例如 Python 或腳本軟體 AutoHotKey)整合。 2. 一組強大的[API](https://github.com/rocksdanister/lively/wiki/API) ,供開發人員建立互動式壁紙。取得硬體讀數、音訊圖表、音樂資訊等。 3. 當電腦上執行全螢幕應用程式/遊戲時(~0% CPU、GPU 使用率),桌布播放會暫停。 4. 您還可以利用[機器學習推理](https://github.com/rocksdanister/lively/wiki/Machine-Learning)來建立動態壁紙。您可以預測任何 2D 影像與相機的距離並產生類似 3D 的視差效果。酷:D 我見過很多人使用它,其中許多人甚至不知道它是開源的。 您可以使用[安裝程式](https://github.com/rocksdanister/lively/releases/download/v2.0.7.4/lively_setup_x86_full_v2074.exe)或透過[Microsoft Store](https://www.microsoft.com/store/productId/9NTM2QC6QWS7?ocid=pdpshare)下載它。 它是 2023 年 Microsoft Store 的獲勝者。 它在 GitHub 上擁有 13k+ Stars,有 60 個版本。 https://github.com/rocksdanister/lively 明星活潑 ⭐️ --- 17. [Netron](https://github.com/lutzroeder/netron) - 神經網路、深度學習和機器學習模型的視覺化工具。 ---------------------------------------------------------------------------- ![內創標誌](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/uyvww60nqm4jrah526w2.png) Netron 是神經網路、深度學習和機器學習模型的檢視器。 Netron 支援 ONNX、TensorFlow Lite、Core ML、Keras、Caffe、Darknet、MXNet、PaddlePaddle、ncnn、MNN 和 TensorFlow.js。 Netron 對 PyTorch、TorchScript、TensorFlow、OpenVINO、RKNN、MediaPipe、ML.NET 和 scikit-learn 提供實驗性支援。 您可以閱讀有關[安裝說明](https://github.com/lutzroeder/netron?tab=readme-ov-file#install)。 您可以存取該[網站](https://netron.app/)並打開這些[範例模型文件](https://github.com/lutzroeder/netron?tab=readme-ov-file#models)以使用它來打開。例如,您可以看到這個[演示](https://netron.app/?url=https://github.com/onnx/models/raw/main/validated/vision/classification/squeezenet/model/squeezenet1.0-3.onnx)。 ![模型](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/z1h4si8oue41x1i7dss5.png) 他們在 GitHub 上有 25k+ Stars,並且是基於 JavaScript 建構的。它們在`v7.5`上只有三個版本,考慮到我只使用了語義版本,這對我來說似乎很困惑。我們都同意這個用例非常出色。 https://github.com/lutzroeder/netron 明星 Netron ⭐️ --- 18. [Cursor](https://github.com/getcursor/cursor) - 以 VSCode 為基礎的人工智慧程式碼編輯器。 ---------------------------------------------------------------------------- ![游標](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/k7em09r6owbz35zh8tt0.png) Cursor 是一款專為與 AI 結對程式設計而設計的程式碼編輯器。遊標適用於 Windows、Mac 和 Linux。 Cursor 不僅僅是 Visual Studio Code (VSC) 擴充功能。這是它自己的應用程式。但別擔心!這是VSC前叉。這意味著它擁有 VSC 所擁有的一切,但在此基礎上也建立了更多人工智慧功能。 https://github.com/anysphere/primpt 他們之前開源了[基於 Codemirror 的編輯器](https://github.com/getcursor/old)。 基於 VSCodium 的 Cursor 版本不是開源的,只有它們的[提示庫](https://github.com/anysphere/priompt)是開源的。 選項數量龐大,您可以查看[功能列表](https://docs.cursor.sh/features/chat),例如選擇用於聊天的 AI 模型、程式碼庫索引和自動終端偵錯。聽起來很酷,對吧:D 您應該檢查的一些功能是: - 允許您透過編輯程式碼庫的「偽程式碼」版本來進行編碼。 - 一旦錯誤出現在您的終端機中,就會自動修復錯誤。 - 要求 AI 更改程式碼區塊,查看編輯的內聯差異。 您也可以閱讀他們官方網站的[變更日誌](https://changelog.cursor.sh/?)。 您可以閱讀有關如何從[VSCode 遷移到 Cursor 的](https://docs.cursor.sh/get-started/moving-from-vsc-to-cursor)資訊。 他們也有定價模型,但免費套餐足以讓您進行測試! 他們在 GitHub 上擁有超過 19k+ 的 Star,並將繼續成長。正如我所說,這不是開源的,但將來可能會改變。 https://github.com/getcursor/cursor 星形遊標 ⭐️ --- 19. [VSCode 除錯視覺化工具](https://github.com/hediet/vscode-debug-visualizer)- VS Code 的擴展,可在偵錯期間可視化資料。 ------------------------------------------------------------------------------------------------- ![VSCode 除錯視覺化工具](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/7hzgtqb6396zx73d3y62.png) 這個專案相當令人印象深刻。它不僅有助於高效除錯,還有助於透過視覺化學習基本概念,從長遠來看,這是無價的。 這是一個 VS Code 擴展,用於在偵錯時可視化資料結構。與 VS Code 的監視視圖類似,但具有豐富的監視值視覺化效果。 他們支援許多語言,如 Dart/Flutter、JS/TS、Go、Python、C#、Java、C++、Ruby、Rust 和 Swift,儘管它很基礎,所以這是一個優點。 其他語言和除錯器也可能有效。對於有基本支援的語言,只能視覺化 JSON 字串。您需要實作邏輯來為您的資料結建置立此 JSON。完全支援的語言提供資料提取器,可將一些眾所周知的資料結構轉換為 JSON。 安裝擴充功能後,您可以使用命令`Debug Visualizer: New View`開啟新的視覺化工具視圖。 您可以[在 market 上](https://marketplace.visualstudio.com/items?itemName=hediet.debug-visualizer)查看所有可用的[演示](https://github.com/hediet/vscode-debug-visualizer/blob/master/extension/README.md#selected-demos)並查看擴展。 您還可以查看他們的[視覺化遊樂場](https://hediet.github.io/visualization/?darkTheme=1),其中包含眾多選項。 他們在 GitHub 上擁有超過 7800 顆星,而且還在不斷增長。 https://github.com/hediet/vscode-debug-visualizer 明星 VSCode 除錯視覺化工具 ⭐️ --- 20. [OpenDevin](https://github.com/OpenDevin/OpenDevin) - 更少的程式碼,更多的內容。 ----------------------------------------------------------------------- ![奧彭文](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4on63bb02g4x4ny8gtcn.png) ![奧彭文](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/l0yepod2rye2jk5r12dt.png) 這是一個開源專案,旨在複製 Devin,一名自主人工智慧軟體工程師,能夠執行複雜的工程任務並在軟體開發專案上與用戶積極協作。該計畫致力於透過開源社群的力量複製、增強和創新 Devin。 只是想讓你知道,這是在德文被介紹之前。 您可以閱讀帶有要求的[安裝說明](https://github.com/OpenDevin/OpenDevin?tab=readme-ov-file#installation)。 他們使用 LiteLLM,因此您可以使用任何基礎模型來執行 OpenDevin,包括 OpenAI、Claude 和 Gemini。 如果您想為 OpenDevin 做出貢獻,您可以查看 [演示](https://github.com/OpenDevin/OpenDevin/blob/main/README.md#opendevin-code-less-make-more)和[貢獻指南](https://github.com/OpenDevin/OpenDevin/blob/main/CONTRIBUTING.md)。 它在 GitHub 上擁有超過 10,700 個 Star,並且正在快速成長。 https://github.com/OpenDevin/OpenDevin 明星 OpenDevin ⭐️ --- 21.[即時語音克隆](https://github.com/CorentinJ/Real-Time-Voice-Cloning)-5秒克隆語音,即時產生任意語音。 ---------------------------------------------------------------------------------- ![即時語音克隆](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ftnuelce5cwng0nunp2h.png) 該專案是透過即時工作的聲碼器實現從說話者驗證到多說話者文字到語音合成 (SV2TTS) 的遷移學習。 SV2TTS是一個分為三個階段的深度學習架構。 在第一階段,人們從幾秒鐘的音訊中建立聲音的數位表示。 在第二和第三階段,該表示被用作參考來產生給定任意文字的語音。 您可以閱讀[如何設定](https://github.com/CorentinJ/Real-Time-Voice-Cloning?tab=readme-ov-file#setup)專案,其中包括安裝要求、下載預訓練模型、測試配置、下載資料集和啟動工具箱。 觀看下面所示的影片示範! https://www.youtube.com/watch?v=-O\_hYhToKoA 我一直喜歡開源專案的最好的部分是,他們甚至非常清楚地提到了替代方案,並且像往常一樣,他們推薦了一些[專案](https://github.com/CorentinJ/Real-Time-Voice-Cloning?tab=readme-ov-file#heads-up),這些專案將為您克隆的聲音提供更好的保真度及其表現力。 他們在 GitHub 上擁有 50k+ Stars,並且僅基於 Python 建置。到目前為止使用起來還是非常可信的。 https://github.com/CorentinJ/Real-Time-Voice-Cloning Star 即時語音克隆 ⭐️ --- 請在評論中告訴我您在此列表中發現了哪些有用的人工智慧工具:D 人工智慧正在改變世界,最好讓人工智慧成為你的朋友,而不是簡單地忽略它。 使用這些工具來提高工作效率並抓住機會創造非凡的東西。 祝你有美好的一天!直到下一次。 在 GitHub 和[Twitter](https://twitter.com/Anmol_Codes)上關注我。 https://github.com/Anmol-Baranwal 關注 Taipy 以了解更多此類內容。 https://dev.to/taipy --- 原文出處:https://dev.to/taipy/21-ai-tools-that-are-changing-the-world-1o54

我使用 Next.js、GPT4 和 CopilotKit 建立了 v0.dev 克隆

長話短說 ---- 在本文中,您將了解如何建立 Vercel 的 V0.dev 的克隆。這是一個很棒的專案,可以加入到您的投資組合中並磨練您的人工智慧能力。 我們將介紹使用: - 用於應用程式框架的 Next.js 🖥️ - 法學碩士 OpenAI 🧠 - v0 👾 的應用程式邏輯 - 使用 CopilotKit 將 AI 整合到您的應用程式中 🪁 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/shhjdu2k5s02gzoby3p0.gif) --- CopilotKit:應用內人工智慧的作業系統框架 ========================= CopilotKit 是[開源人工智慧副駕駛平台。](https://github.com/CopilotKit/CopilotKit)我們可以輕鬆地將強大的人工智慧整合到您的 React 應用程式中。 建造: - ChatBot:上下文感知的應用內聊天機器人,可以在應用程式內執行操作 💬 - CopilotTextArea:人工智慧驅動的文字字段,具有上下文感知自動完成和插入功能📝 - 聯合代理:應用程式內人工智慧代理,可以與您的應用程式和使用者互動🤖 ![圖片描述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/i8gltoave8490fg234ro.gif) {% cta https://github.com/CopilotKit/CopilotKit %} Star CopilotKit ⭐️ {% endcta %} (原諒人工智慧的拼字錯誤並給一顆星:) 現在回到文章。 --- 先決條件 ---- 要開始學習本教程,您需要具備以下條件: - 文字編輯器(VS Code、遊標) - React、Next.js、Typescript 和 Tailwind CSS 的基本知識。 - Node.js 安裝在您的 PC/Mac 上 - 套件管理器 (npm) - [OpenAI](https://platform.openai.com/docs/overview) API 金鑰 - [CopilotKit](https://docs.copilotkit.ai/getting-started/quickstart-textarea)安裝在您的 React 專案中 v0是什麼? ------ **v0**是[Vercel 開發的](https://vercel.com/blog/announcing-v0-generative-ui)生成式使用者介面 (UI) 工具,允許使用者給予提示並描述他們的想法,然後將其轉換為用於建立 Web 介面的 UI 程式碼。它利用[生成式 AI](https://medium.com/data-science-at-microsoft/generative-ai-openai-and-chatgpt-what-are-they-3c80397062c4)以及[React](https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started) 、 [Tailwind CSS](https://tailwindcss.com/)和[Shadcn UI](https://ui.shadcn.com/)等開源工具,根據使用者提供的描述產生程式碼。 *這是使用 v0 產生的 Web 應用程式 UI 的範例* https://v0.dev/t/nxGnMd1uVGc 了解專案要求 ------ 在本逐步教程結束時,克隆將具有以下專案要求: 1. **使用者輸入:**使用者輸入文字作為提示,描述他們想要產生的 UI。這將使用 CopilotKit 聊天機器人來完成,該聊天機器人由[CopilotSidebar](https://docs.copilotkit.ai/reference/CopilotSidebar)提供。 2. **CopilotKit 整合:** CopilotKit 將用於為 Web 應用程式提供 AI 功能以產生 UI。 3. **渲染 UI:**在 UI React/JSX 程式碼和渲染 UI 之間切換的切換開關。 使用 CopilotKit 建立 v0 克隆 ---------------------- **第 1 步:建立一個新的 Next.JS 應用程式** 在終端機中開啟工作區資料夾並執行以下命令建立新的 Next.js 應用程式: ``` npx create-next-app@latest copilotkit-v0-clone ``` 這將建立一個名為`copilotkit-v0-clone`新目錄,其中包含 Next.JS 專案結構,並安裝了所需的依賴項。它將在您的終端中顯示這一點,並對除最後一個之外的所有選項都選擇**“是”** ,因為建議使用預設`import alias` 。其他提示安裝我們將在專案中使用的 Typescript 和 TailwindCSS。 ![終端](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/o6l07dxihdi8hw68kv4e.png) 使用`cd`指令導航到專案目錄,如下所示: ``` cd copilotkit-v0-clone ``` **步驟 2:設定 CopilotKit 後端端點。閱讀[文件](https://docs.copilotkit.ai/getting-started/quickstart-backend)以了解更多資訊。** 執行以下命令來安裝 CopilotKit 後端軟體包: ``` npm i @copilotkit/backend ``` 然後造訪 https://platform.openai.com/api-keys 以取得您的**GPT 4** OpenAI API 金鑰。 ![開放伊](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ise7y3qnb3cyg4j0mjr6.png) 取得 API 金鑰後,在根目錄中建立一個`.env.local`檔案。 `.env.local`檔案應該是這樣的: ``` OPENAI_API_KEY=Your OpenAI API key ``` 在**app**目錄下建立該目錄; `api/copilot/openai`並建立一個名為`route.ts`的檔案。該檔案用作 CopilotKit 請求和 OpenAI 互動的**後端**端點。它處理傳入的請求,使用 CopilotKit 處理它們,並傳回適當的回應。 我們將在`route.ts`檔案中建立一個POST請求函數,在post請求內部建立一個`CopilotBackend`類別的新實例,該類別提供了處理CopilotKit請求的方法。 然後,我們呼叫`CopilotBackend`實例的`response`方法,並傳遞請求物件 ( `req` ) 和`OpenAIAdapter`類別的新實例作為參數。此方法使用 CopilotKit 和 OpenAI API 處理請求並回傳回應。 如下面的程式碼所示,我們從`@copilotkit/backend`套件導入`CopilotBackend`和`OpenAIAdapter`類別。這些類別對於與 CopilotKit 和 OpenAI API 互動是必需的。 ``` import { CopilotBackend, OpenAIAdapter } from "@copilotkit/backend"; export const runtime = "edge"; export async function POST(req: Request): Promise<Response> { const copilotKit = new CopilotBackend(); return copilotKit.response(req, new OpenAIAdapter()); } ``` **步驟 3:為 v0 克隆建立元件** 我們將使用 Shadcn UI 庫中的元件。要處理這個問題,讓我們透過執行`shadcn-ui init`命令來設定 Shadcn UI 庫來設定您的專案 ``` npx shadcn-ui@latest init ``` 然後我們將用這個問題來配置components.json ``` Which style would you like to use? › Default Which color would you like to use as base color? › Slate Do you want to use CSS variables for colors? › no / yes ``` 我們在 Shadcn UI 中使用的元件是**按鈕**和**對話框**。那麼讓我們來安裝它們吧! 對於[按鈕](https://ui.shadcn.com/docs/components/button),執行此命令 ``` npx shadcn-ui@latest add button ``` 若要安裝[對話](https://ui.shadcn.com/docs/components/dialog)方塊元件,請執行以下命令 ``` npx shadcn-ui@latest add dialog ``` **第 4 步:設定 CopilotKit 前端。閱讀[文件](https://docs.copilotkit.ai/getting-started/quickstart-textarea)以了解更多資訊。** 若要安裝 CopilotKit 前端軟體包,請執行以下命令: ``` npm i @copilotkit/react-core @copilotkit/react-ui ``` 根據[CopilotKit 文件](https://docs.copilotkit.ai/getting-started/quickstart-textarea),要使用 CopilotKit,我們必須設定前端包裝器以透過 Copilot 傳遞任何 React 應用程式。當提示傳遞到 CopilotKit 時,它會透過 URL 將其傳送到 OpenAI,後者會回傳回應。 在**應用程式**目錄中,讓我們更新`layout.tsx`檔案。該文件將定義我們應用程式的佈局結構並將 CopilotKit 整合到前端。 輸入以下程式碼: ``` "use client"; import { CopilotKit } from "@copilotkit/react-core"; import "@copilotkit/react-textarea/styles.css"; // also import this if you want to use the CopilotTextarea component import "@copilotkit/react-ui/styles.css"; import { Inter } from "next/font/google"; import "./globals.css"; import { CopilotSidebar, } from "@copilotkit/react-ui"; const inter = Inter({ subsets: ["latin"] }); export default function RootLayout({ children, }: Readonly<{ children: React.ReactNode; }>) { return ( <html lang="en"> <body className={inter.className}> <CopilotKit url="/api/copilotkit/openai/"> <CopilotSidebar defaultOpen>{children}</CopilotSidebar> </CopilotKit> </body> </html> ); } ``` 該元件代表我們應用程式的根佈局。它使用 CopilotKit 包裝整個應用程式,根據我們在**步驟 2**中為後端建立的內容指定 CopilotKit 後端端點的 URL ( `/api/copilotkit/openai/` )。此外,它還包括一個 CopilotSidebar 元件,可作為 CopilotKit 的側邊欄,並將 Children 屬性作為其內容傳遞。 **第 5 步:設定主應用程式** 讓我們建立應用程式的結構。它將有一個標題、側邊欄和預覽畫面。 對於**Header** ,導航到**元件**目錄,如下所示, `src/components`然後建立一個`header.tsx`檔案並輸入以下程式碼: ``` import { CodeXmlIcon } from "lucide-react"; import { Button } from "./ui/button"; const Header = (props: { openCode: () => void }) => { return ( <div className="w-full h-20 bg-white flex justify-between items-center px-4"> <h1 className="text-xl font-bold">Copilot Kit</h1> <div className="flex gap-x-2"> <Button className=" px-6 py-1 rounded-md space-x-1" variant={"default"} onClick={props.openCode} > <span>Code</span> <CodeXmlIcon size={20} /> </Button> </div> </div> ); }; export default Header; ``` 對於**側欄,**建立一個`sidebar.tsx`檔案並輸入以下程式碼: ``` import { ReactNode } from "react"; const Sidebar = ({ children }: { children: ReactNode }) => { return ( <div className="w-[12%] min-h-full bg-white rounded-md p-4"> <h1 className="text-sm mb-1">History</h1> {children} </div> ); }; export default Sidebar; ``` 然後對於**預覽**螢幕,建立一個`preview-screen.tsx`檔案並輸入程式碼: ``` const PreviewScreen = ({ html_code }: { html_code: string }) => { return ( <div className="w-full h-full bg-white rounded-lg shadow-lg p-2 border"> <div dangerouslySetInnerHTML={{ __html: html_code }} /> </div> ); }; export default PreviewScreen; ``` 現在讓我們將它們放在一起,打開`page.tsx`檔案並貼上以下程式碼: ``` "use client"; import { useState } from "react"; import { Dialog, DialogContent, DialogDescription, DialogHeader, DialogTitle, } from "@/components/ui/dialog"; import Header from "@/components/header"; import Sidebar from "@/components/sidebar"; import PreviewScreen from "@/components/preview-screen"; import { Input } from "@/components/ui/input"; export default function Home() { const [code, setCode] = useState<string[]>([ `<h1 class="text-red-500">Hello World</h1>`, ]); const [codeToDisplay, setCodeToDisplay] = useState<string>(code[0] || ""); const [showDialog, setShowDialog] = useState<boolean>(false); const [codeCommand, setCodeCommand] = useState<string>(""); return ( <> <main className="bg-white min-h-screen px-4"> <Header openCode={() => setShowDialog(true)} /> <div className="w-full h-full min-h-[70vh] flex justify-between gap-x-1 "> <Sidebar> <div className="space-y-2"> {code.map((c, i) => ( <div key={i} className="w-full h-20 p-1 rounded-md bg-white border border-blue-600" onClick={() => setCodeToDisplay(c)} > v{i} </div> ))} </div> </Sidebar> <div className="w-10/12"> <PreviewScreen html_code={readableCode || ""} /> </div> </div> <div className="w-8/12 mx-auto p-1 rounded-full bg-primary flex my-4 outline-0"> <Input type="text" placeholder="Enter your code command" className="w-10/12 p-6 rounded-l-full outline-0 bg-primary text-white" value={codeCommand} onChange={(e) => setCodeCommand(e.target.value)} /> <button className="w-2/12 bg-white text-primary rounded-r-full" onClick={() => generateCode.run(context)} > Generate </button> </div> </main> <Dialog open={showDialog} onOpenChange={setShowDialog}> <DialogContent> <DialogHeader> <DialogTitle>View Code.</DialogTitle> <DialogDescription> You can use the following code to start integrating into your application. </DialogDescription> <div className="p-4 rounded bg-primary text-white my-2"> {readableCode} </div> </DialogHeader> </DialogContent> </Dialog> </> ); } ``` 我們來分解一下上面的程式碼: `const [code, setCode] = useState<string[]>([]);`將用於保存生成的程式碼 `const [codeToDisplay, setCodeToDisplay] = useState<string>(code[0] || "");`將用於保存預覽畫面上顯示的程式碼。 `const [showDialog, setShowDialog] = useState<boolean>(false);`這將保持對話框的狀態,該對話框顯示您可以複製的生成程式碼。 在下面的程式碼中,我們循環產生的程式碼(一串陣列)將其顯示在側邊欄上,這樣當我們選擇一個程式碼時,它就會顯示在預覽畫面上。 ``` <Sidebar> <div className="space-y-2"> {code.map((c, i) => ( <div key={i} className="w-full h-20 p-1 rounded-md bg-white border border-blue-600" onClick={() => setCodeToDisplay(c)} > v{i} </div> ))} </div> </Sidebar> ``` `<PreviewScreen html_code={codeToDisplay} />`在這裡,我們發送要在預覽畫面上顯示的程式碼。預覽畫面元件採用 CopilotKit 產生的程式碼字串,並使用`dangerouslySetInnerHTML`來呈現產生的程式碼。 下面我們有一個`Dialog`元件,它將顯示 CoplilotKit 產生的程式碼,可以將其複製並加入到您的程式碼中。 ``` <Dialog open={showDialog} onOpenChange={setShowDialog}> <DialogContent> <DialogHeader> <DialogTitle>View Code.</DialogTitle> <DialogDescription> You can use the following code to start integrating into your application. </DialogDescription> <div className="p-4 rounded bg-primary text-white my-2"> {readableCode} </div> </DialogHeader> </DialogContent> </Dialog> ``` **步驟6:實作主要應用程式邏輯** 在這一步驟中,我們將 CopilotKit 整合到我們的 v0 克隆應用程式中,以促進人工智慧驅動的 UI 生成。我們將使用 CopilotKit 的 React hook 來管理狀態,使元件可供 Copilot 讀取和操作,並與 OpenAI API 互動。 在您的`page.tsx`檔案中,匯入以下內容: ``` import { CopilotTask, useCopilotContext, useMakeCopilotReadable, } from "@copilotkit/react-core"; ``` 然後我們在`Home`元件中使用`CopilotTask`定義一個`generateCode`任務: ``` const readableCode = useMakeCopilotReadable(codeToDisplay); const generateCode = new CopilotTask({ instructions: codeCommand, actions: [ { name: "generateCode", description: "Create Code Snippet with React.js, tailwindcss.", parameters: [ { name: "code", type: "string", description: "Code to be generated", required: true, }, ], handler: async ({ code }) => { setCode((prev) => [...prev, code]); setCodeToDisplay(code); }, }, ], }); const context = useCopilotContext(); ``` 我們使用`useMakeCopilotReadable`來傳遞現有程式碼並確保可讀性。然後我們使用`CopilotTask`產生UI,並將`generateCode`任務綁定到**生成**按鈕,這樣就可以透過與按鈕元件互動來產生程式碼片段。 此操作由使用者互動觸發,並在呼叫時執行非同步`handler`函數。 `handler`將產生的程式碼新增至程式碼陣列中,更新應用程式狀態以包含新產生的程式碼片段,並將產生的程式碼傳送到預覽畫面上顯示和呈現,預覽畫面也可以複製。 此外, `instructions`屬性指定提供給 Copilot 的命令,該命令儲存在`codeCommand`狀態變數中。 有關`CopilotTask`運作方式的完整說明,請查看此處的文件:https://docs.copilotkit.ai/reference/CopilotTask **第 6 步:執行 v0 克隆應用程式** 至此,我們已經完成了 v0 克隆設置,然後可以透過執行來啟動開發伺服器 ``` npm run dev ``` ![終端](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/6wm5oddqlzewca34ko0g.png) 可以使用此 URL 在瀏覽器中存取該 Web 應用程式 [http://本地主機:3000](http://localhost:3000/) 然後您可以輸入提示並點擊**“生成”。**這裡有些例子: - **定價頁面:**如下所示,這是產生的UI,有一個切換按鈕可以在UI和React程式碼之間切換: ![在](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/cm3gyodvbl0x9i0uvxp9.png) 如果點擊右上角的**Code** &lt;/&gt; 按鈕,它會切換到產生的 UI 的 React 程式碼,如下所示: ![在](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/1b5sruonnxl7x42ad8y1.png) - 註冊頁面 UI 範例: ![報名](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/350l7o66l6lq5d4kxiav.png) - 還有一個結帳頁面 ![查看](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/dpj6j338fp2gavsvgtti.png) 要克隆專案並在本地執行它,請打開終端並執行以下命令: ``` git clone https://github.com/Tabintel/v0-copilot-next ``` 然後執行`npm install`以安裝專案所需的所有依賴項,並`npm run dev`來執行 Web 應用程式。 結論 -- 總而言之,您可以使用[CopilotKit](https://github.com/CopilotKit/CopilotKit)建立 v0 克隆,為您的設計提供 UI 提示。 CopilotKit 不僅適用於 UI 提示,它還可以用於建立[AI 驅動的 PowerPoint 生成器](https://dev.to/copilotkit/how-to-build-ai-powered-powerpoint-app-nextjs-openai-copilotkit-ji2)、 [AI 簡歷產生器](https://dev.to/copilotkit/how-to-build-the-with-nextjs-openai-1mhb)等應用程式。 可能性是無限的,立即查看 CopilotKit,將您的 AI 想法變為現實。 在[GitHub](https://github.com/Tabintel/v0-copilot-next)上取得完整原始碼。 從[文件](https://docs.copilotkit.ai/getting-started/quickstart-textarea)中了解有關如何使用 CopilotKit 的更多資訊。 另外,別忘了[Star CopilotKit!](https://github.com/CopilotKit/CopilotKit) ⭐ --- 原文出處:https://dev.to/copilotkit/i-created-a-v0-clone-with-nextjs-gpt4-copilotkit-3cmb

由於錯誤,我賣掉了我的新創公司:我希望我有這個無伺服器儲存庫!

2021 年,我創辦了一家名為 Linvo 的新創公司,這是一款 LinkedIn 自動化工具。它產生了很多錢,但燒錢率也很高。 我可以告訴你,作為一個年輕的企業家(完全自力更生),我損失了大部分錢😆 我的系統的問題是它不斷故障;我不是世界上最好的程式設計師,但讓我詳細說明一下。 ![收入](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/4l95m758p7m9fg4914dc.png) --- 傀儡師會吸走你的記憶 ---------- Linvo 在其生命週期中進行了幾次迭代。我使用了我所知道的技術:React 和 NestJS。 基本上,任何自動化的雲端抓取都會涉及建立任務然後解決它們。 它看起來像這樣: ![工人和刮削](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/9n4d78oe0cz6vxl1y34n.png) - Cron 每 10 分鐘執行一次,尋找新的事情要做,並將其發送到佇列。 - 工作人員從佇列中取出任務並處理它們。 - 將所有內容儲存到資料庫。 這是一個非常簡單的解決方案,在多個 EC2 (AWS) 和 Redis 上運作。 理論上,它應該有效 - 是的,您需要水平擴展工作人員,但這不是我的問題。 我開始經歷其他事情——**記憶體洩漏。** 您可能知道, [Puppeteer](https://pptr.dev/) - 一種 chromium 自動瀏覽器,很重(與您電腦上的 Chrome 相同),而且我執行了很多它們 - 它們耗盡了我的記憶體 - 導致伺服器停止工作並佔用網路頻寬。 ![糟透了](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5fsl47a1yzumo3qexa8h.gif) --- 需要一個解決方案 -------- 重構聽起來就像 - 是的,讓我們這樣做,但我的 Intercom 支援充滿了支援票(我已經有很多用戶),而且我知道我必須建立一些瘋狂的重構。 我有一個解決方案的想法 - 讓我們使用 AWS lambda。 - 拉姆達啟動 - 做任務 - 死亡(大部分時間) 它不會影響你的網路。 它會死掉並且不會導致記憶體洩漏。 它有點貴,因為 Lambda 並不意味著無限期地執行——這會消除整個概念,但我很絕望。 (嗯,好處是你不需要考慮規模。) 這是新的基礎設施: ![新基礎設施](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/sr304vf0z81f0bqfxnup.png) - 事件橋 cron 每 1 分鐘執行一次(這是最小值) - 為佇列建立六個事件的 Lambda(使其像 cron 每 10 秒執行一次) - SQS隊列(再見,Redis) - Lambda 以自動縮放功能脫穎而出(是嗎?) --- 供應商鎖定 ----- 正如您可能從上下文中了解到的那樣 - 現在我完全使用 AWS,但我不介意 - 只介意如何在我的計算機上測試它。 以前,我使用[Sam](https://github.com/aws/aws-sam-cli) 。和[Serverless](https://www.serverless.com/)幾乎一樣快速地創造整個環境。 是的,他們確實帶來了一些本地測試。他們可以獲得您的 lambda 並將其轉變為端點!耶! 但我使用的是 Event Bridge、SQS 和 Lambda。那是不可能的。 我遇過[localstack](https://github.com/localstack/localstack) 。它本來應該幫助我在我的電腦上建立整個 AWS 堆疊,但當時很多東西都不受支持,例如 Lambda 層。我在使用它時不知所措。 因此,我開始建立我的「自己的」基礎設施,在 AWS 上部署了一個「測試」SQS,並用它執行本地程式碼(一個呼叫函數的函數),但結果很糟糕。 我在生產方面做得不好;我感覺這個詞當時就壓在我身上。 我只是想擺脫這家新創公司;我甚至免費向人們提供它,吸引了顧客並擺脫了這個問題。 長話短說,我設法以低價出售了該系統,但最近,我發現了一些有趣的事情。 --- Winglang - 類似 Typescript 的雲方言 ----------------------------- 我想我的痛苦是真實的,儘管我會很高興在當天找到它 - 我很高興它今天還活著。 [Winglang](https://github.com/winglang/wing)幫助您建立與我使用的相同的雲端基礎設施,但好處是: - 它不需要您使用任何設定檔。您基本上用程式碼定義了整個基礎設施(您可以檢查他們的整個預檢和飛行中文件) - 你可以在本地執行它 - 謝謝你,上帝,🙏🏻🙏🏻🙏🏻🙏🏻,包括所有基礎設施。 - 您可以將其部署到任何雲端供應商,並且不必使用 AWS。他們實際上可以產生任何 Terraform 或雲端結構,以便於部署。 我和Winglang的創始人Elad(著名的CDK的建置者)進行了交談,他說了一些讓我抽搐的話。 > 當您在飛機上時,您實際上可以處理您的專案並為其編寫測試🤯 我自己無法給他們足夠的星星 - 但請幫我一個忙,給他們的存儲庫加星標,當然,將其用於您的下一個專案。 https://github.com/winglang/wing ![謝謝](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/giofk3zupgxjgnc57zw5.gif) --- 最後的話 ---- 我對翼朗很生氣。我希望他們早點這麼做。現在他們出現了。什麼時候一切都與人工智慧有關? 我建立了一個新的 YouTube 頻道,主要涉及技術、開源和行銷:) 如果您對此感興趣,請隨時在這裡訂閱: https://www.youtube.com/@nevo-david?sub\_confirmation=1 --- 原文出處:https://dev.to/github20k/i-sold-my-startup-because-of-bugs-i-wish-i-had-this-serverless-repository-4l3a

從開發者的角度看 Kubernetes

我們透過與事物互動和理解事物的方式來感知事物。對於基礎架構團隊來說,Kubernetes 是一種擴展和管理應用程式的好方法,但對於前端/後端開發人員來說,它可能看起來很複雜且壓力很大。 Kubernetes 引入了許多概念和術語(部署、服務、pod…),這些概念和術語需要時間來掌握,甚至需要更多時間來掌握。但開發人員有時必須每週(甚至每天)與他們互動。 透過我們的經驗和研究,我們確定了開發人員使用 Kubernetes 的三種最常見的方式。 那麼,開發人員眼中的 Kubernetes 是什麼樣子的呢? ### 支持我們🙏 ![Github 星星](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/qqstf3s31okn4kzghqit.gif) 在我們開始之前,如果您為我們的[開源儲存庫](https://github.com/cyclops-ui/cyclops)加註星標並幫助我們獲得我們的產品,我們將非常高興 在其他開發者面前的工具 ⭐ 接觸點 --- 根據公司的結構和開發工作流程,開發人員要么根本不與 Kubernetes 交互,因為自動化流程和腳本正在執行此操作,要么通過三個接觸點與 Kubernetes 交互: 1. 他們的應用程式的配置文件 2. 在 K8s 叢集中部署應用程式 3. 監控他們的應用程式 ### 設定檔 ![YAML](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/5ugislkg1jjc9wgfiby5.png) 設定檔告訴 Kubernetes 如何處理應用程式。它們是聲明性的,這意味著您編寫您想要看到的結果,而不是實現該結果的步驟。 這些文件通常用[YAML](https://yaml.org/)編寫,它們很大且難以閱讀和理解。用 YAML 寫作會帶來挑戰(和[怪癖](https://noyaml.com/)),因為它是開發人員需要學習的額外程式語言。 配置錯誤很難發現和修正,但卻是**一件大事**。即使您對應用程式進行了完美編碼,沒有任何錯誤(假設😅),配置中的錯誤也可能意味著您的應用程式將無法執行。 ### 部署 部署應用程式是在 Kubernetes 叢集中啟動應用程式的過程。執行此操作的本機方法是使用`kubectl` 。 [`kubectl`](https://kubernetes.io/docs/reference/kubectl/)是 Kubernetes 的**命令列工具**。作為命令列工具/介面是我們應該考慮的。高級開發人員應該習慣 CLI,但初級開發人員可能仍然很膽怯。習慣`kubectl`為學習曲線增加了新的一層。 然而,部署需要的不僅僅是了解`kubectl`的可用命令;它還需要了解上下文以及它如何操作 Kubernetes 物件。 ### 監控 現在我們的開發人員已經配置並部署了他們的應用程式,他們就完成了,對吧?嗯,不。 該應用程式可能存在相當多的錯誤和問題,並且他們應該能夠監視它們並在需要時修復它們。 找出 Kubernetes 叢集內的應用程式出了什麼問題**並不簡單**。開發人員需要了解叢集中的物件以及它們如何相互互動。 例如,要取得應用程式的日誌,您需要知道它在 Pod 中執行。該 Pod 位於副本集中,副本集本身位於 Deployment 內。在使用`kubectl`翻閱 K8s 資源時,您必須了解這些關係。 開發者平台 ----- 這只是 Kubernetes 的冰山一角。它的複雜性大大延長了新開發人員的入職時間,並且引入的所有額外步驟都會減慢開發週期。 公司通常有專門的團隊來處理基礎設施和 Kubernetes。當開發人員遇到問題或需要協助時,他們會向這些團隊尋求協助。但你可以想像,在處理像 Kubernetes 這樣複雜的事情時,需要幫助是很常見的事情。 這就是為什麼我們看到開發者平台興起,它減少了開發者和基礎設施團隊之間的摩擦。一個好的平台可以使建立、更新和部署的開發週期盡可能順利和直接。 ### Cyclops - 為開發人員打造的 Kubernetes 平台 [Cyclops](https://github.com/cyclops-ui/cyclops)是一款出色的開源開發工具,它將 Kubernetes 的複雜性抽象化為簡單的圖形使用者介面。我們將其稱為平台,因為您的基礎架構團隊可以自訂 UI 以滿足您的特定需求和願望。 那麼,Cyclops是如何解決上述問題的呢? 1. 使用 Cyclops,您的開發人員永遠不會直接與設定檔互動。您建立一個模板,然後將其作為表單呈現給開發人員。這避免了學習 YAML 等語言的需要,並且還有一個額外的好處,即允許您向其輸入加入驗證,從而使開發人員更難犯錯。 2. 一旦開發人員在 Cyclops 的幫助下指定了他們的需求,部署他們的應用程式就像單擊按鈕一樣簡單。 3. 現在他們已經部署了應用程式,Cyclops 可以透過其用戶介面輕鬆監控其狀態。應用程式的詳細資訊很容易存取,包括它使用的所有資源(和日誌)。 讓我們看看它的實際效果! 安裝過程只需兩步,但有一些[先決條件](https://cyclops-ui.com/docs/installation/prerequisites),最主要的是 Kubernetes 叢集。 因此,一旦叢集啟動並執行,您就可以使用以下命令安裝 Cyclops: ``` kubectl apply -f https://raw.githubusercontent.com/cyclops-ui/cyclops/blogs-demo/install/cyclops-install.yaml ``` 一旦成功安裝(可能需要一兩分鐘),您可以透過以下方式存取它: ``` kubectl port-forward svc/cyclops-ui 3000:3000 -n cyclops ``` Cyclops 現在應該可以在瀏覽器中存取[http://localhost:3000](http://localhost:3000/) 。 現在,透過點擊`Add Module`按鈕,您將進入以下畫面: ![獨眼巨人中的新模組](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/ebfwzkonciqvlodmyyq2.png) 我們為您建立了一個預設模板,但此畫面是高度可自訂的(您可以嘗試[自己的 Helm 圖表](https://cyclops-ui.com/docs/installation/demo/new_module)!)。現在,開發人員無需讀取和編寫 YAML,而是可以透過點擊「儲存」按鈕填寫這些字段,然後他們的應用程式將部署! ![Cyclops 中的應用程式概述](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/e2o1j6ous1lo06auj6gh.png) 下一個畫面顯示了新部署的應用程式的詳細視圖。在這裡,您可以查看所有指定的資源(並輕鬆存取日誌😉)。如果出現任何問題,都可以在這裡看到! 如果您希望更改配置中的某些內容(例如新增應用程式的更多副本),請按一下`Edit`按鈕。您將被帶到與第一個螢幕類似的螢幕,您可以在其中進行這些更改,甚至不知道您正在下面處理 YAML。 包起來 --- 我們希望本文能很好地展示了開發人員在 Kubernetes 中遇到的一些問題,以及您或您的開發人員下次使用它時可以考慮的潛在解決方案。 如果您遇到 Kubernetes 問題或開發人員用 K8s 相關問題糾纏您,請考慮在我們的 GitHub[儲存庫](https://github.com/cyclops-ui/cyclops)上給我們一個星星來支援我們 ⭐ 您是否遇過 Kubernetes 的這些接觸點?在下面的評論中分享您的經驗! --- 原文出處:https://dev.to/cyclops-ui/kubernetes-through-the-developers-perspective-38lf

在本機上使用 HTTPS 的非常簡單的方法

測試您的網站在本機電腦上是否運作良好始終是一項繁重的工作。 我找到了一個非常簡單的工具[mkcert](https://github.com/FiloSottile/mkcert) : ``` ➜ localhost-https mkcert -install Using the local CA at "/Users/.../mkcert" ✨ The local CA is now installed in the system trust store! ⚡️ The local CA is now installed in the Firefox trust store (requires browser restart)! 🦊 The local CA is now installed in Java''s trust store! ☕️ ➜ localhost-https mkcert localhost Using the local CA at "/Users/.../mkcert" ✨ Created a new certificate valid for the following names 📜 - "localhost" The certificate is at "./localhost.pem" and the key at "./localhost-key.pem" ✅ ``` 然後你可以用一個簡單的 HTML 頁面來測試: ``` ➜ localhost-https cat index.html ───────┬────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── │ File: index.html ───────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 1 │ <html> 2 │ <body> 3 │ HELLO WORLD 4 │ </body> 5 │ </html> ───────┴────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── ➜ localhost-https ./node_modules/http-server/bin/http-server -S -C ./localhost.pem -K ./localhost-key.pem [18:12:41] Starting up http-server, serving ./ through https Available on: https://127.0.0.1:8080 https://192.168.1.69:8080 Hit CTRL-C to stop the server ``` 這是結果: ![](https://thepracticaldev.s3.amazonaws.com/i/1z5km8xkhgqqwgyrm80i.png) FiloSottile/mkcert --- 原文出處:https://dev.to/rhymes/really-easy-way-to-use-https-on-localhost-341m