# 長話短說;博士 我們都已經看到了 ChatGPT 的功能(這對任何人來說都不陌生)。 很多文章都是使用 ChatGPT 一遍又一遍地寫的。 **實際上**,DEV 上的文章有一半是用 ChatGPT 寫的。 你可以使用一些[AI內容偵測器](https://copyleaks.com/ai-content- detector)來檢視。 問題是,ChatGPT 永遠不會產生一些非凡的內容,除了它內部已經有(經過訓練/微調)的內容。 但有一種方法可以超越目前使用 RAG(OpenAI 助理)訓練的內容。 [上一篇](https://dev.to/triggerdotdev/train-chatgpt-on-your-documentation-1a9g),我們討論了在您的文件上「訓練」ChatGPT;今天,讓我們看看如何從中製作出很多內容。我們將: - 使用 Docusaurus 建立新的部落格系統。 - 詢問 ChatGPT,為我們寫一篇與文件相關的部落格文章。  --- ## 你的後台工作平台🔌 [Trigger.dev](https://trigger.dev/) 是一個開源程式庫,可讓您使用 NextJS、Remix、Astro 等為您的應用程式建立和監控長時間執行的作業! [](https://github.com/triggerdotdev/trigger.dev) 請幫我們一顆星🥹。 這將幫助我們建立更多這樣的文章💖 {% cta https://github.com/triggerdotdev/trigger.dev %} 為 Trigger.dev 儲存庫加註星標 ⭐️ {% endcta %} --- ## 上次回顧 ⏰ - 我們建立了一個作業來取得文件 XML 並提取所有 URL。 - 我們抓取了每個網站的 URL 並提取了標題和內容。 - 我們將所有內容儲存到文件中並將其發送給 ChatGPT 助手。 - 我們建立了一個 ChatBot 畫面來詢問 ChatGPT 有關文件的資訊。 您可以在此處找到上一個[教學]的完整原始程式碼(https://github.com/triggerdotdev/blog/tree/main/openai-assistant)。 ---  ## 稍作修改⚙️ 上次,我們建立了一個文件助理。我們寫: ``` You are a documentation assistant, loaded with documentation from ' + payload.url + ', return everything in an MD format. ``` 讓我們將其更改為部落格作者,請轉到“jobs/process.documentation.ts”第 92 行,並將其替換為以下內容: ``` You are a content writer assistant. You have been loaded with documentation from ${payload.url}, you write blog posts based on the documentation and return everything in the following MD format: --- slug: [post-slug] title: [post-title] --- [post-content] ``` 使用“slug”和“title”非常重要,因為這是 Docusaurus 的格式 - 我們的部落格系統可以接受(當然,我們也以 MD 格式發送所有輸出) ---  ## 多庫龍🦖 您可以使用多種類型的部落格系統! 對於我們的用例,我們將使用 Docusaurus,它可以讀取基於 MD 的格式(我們從 ChatGPT 請求的輸出)。 **我們可以透過執行來安裝 Docusaurus:** ``` npx create-docusaurus@latest blog classic --typescript ``` 接下來,我們可以進入已建立的目錄並執行以下命令: ``` npm run start ``` 這將啟動 Docusaurus。你可以關註一下。還有一個名為“blog”的附加目錄,其中包含所有部落格文章;這是我們保存 ChatGPT 產生的部落格文章的地方。  ---  ## 產生部落格 📨 我們需要創造一個就業機會 - 取得部落格標題 - 使用 ChatGPT 產生完整的部落格文章 - 將其保存到我們部落格上的 MD 文件中 我們可以輕鬆地使用 ChatGPT 來實現這一點! 前往“jobs”資料夾並新增一個名為“process.blog.ts”的新檔案。新增以下程式碼: ``` import { eventTrigger } from "@trigger.dev/sdk"; import { client } from "@openai-assistant/trigger"; import {object, string} from "zod"; import {openai} from "@openai-assistant/helper/open.ai"; import {writeFileSync} from "fs"; import slugify from "slugify"; client.defineJob({ // This is the unique identifier for your Job, it must be unique across all Jobs in your project. id: "process-blog", name: "Process Blog", version: "0.0.1", // This is triggered by an event using eventTrigger. You can also trigger Jobs with webhooks, on schedules, and more: https://trigger.dev/docs/documentation/concepts/triggers/introduction trigger: eventTrigger({ name: "process.blog.event", schema: object({ title: string(), aId: string(), }) }), integrations: { openai }, run: async (payload, io, ctx) => { const {title, aId} = payload; const thread = await io.openai.beta.threads.create('create-thread'); await io.openai.beta.threads.messages.create('create-message', thread.id, { content: ` title: ${title} `, role: 'user', }); const run = await io.openai.beta.threads.runs.createAndWaitForCompletion('run-thread', thread.id, { model: 'gpt-4-1106-preview', assistant_id: payload.aId, }); if (run.status !== "completed") { console.log('not completed'); throw new Error(`Run finished with status ${run.status}: ${JSON.stringify(run.last_error)}`); } const messages = await io.openai.beta.threads.messages.list("list-messages", run.thread_id, { query: { limit: "1" } }); return io.runTask('save-blog', async () => { const content = messages[0].content[0]; if (content.type === 'text') { const fileName = slugify(title, {lower: true, strict: true, trim: true}); writeFileSync(`./blog/blog/${fileName}.md`, content.text.value) return {fileName}; } }); }, }); ``` - 我們加入了一些必要的變數: - `title` 部落格文章標題 - `aId` 上一篇文章中新增的助手 ID。 - 我們為助手建立了一個新線程(`io.openai.beta.threads.create`) - 我們無法在沒有任何線程的情況下質疑它。與之前的教程不同,在這裡,我們對每個請求建立一個新線程。我們不需要對話中最後一條訊息的上下文。 - 然後,我們使用部落格標題為線程(`io.openai.beta.threads.messages.create`)新增訊息。我們不需要提供額外的說明 - 我們已經在第一部分完成了該部分😀 - 我們執行 `io.openai.beta.threads.runs.createAndWaitForCompletion` 來啟動進程 - 通常,您需要某種每分鐘執行一次的遞歸來檢查作業是否完成,但是 [Trigger.dev]( http://Trigger .dev)已經加入了一種執行進程並同時等待它的方法🥳 - 我們在查詢正文中執行帶有“limit: 1”的“io.openai.beta.threads.messages.list”,以從對話中獲取第一則訊息(在ChatGPT 結果中,第一則訊息是最後一條訊息) 。 - 然後,我們使用「writeFileSync」從 ChatGPT 取得的值來儲存新建立的部落格 - 確保您擁有正確的部落格路徑。 轉到“jobs/index.ts”並加入以下行: ``` export * from "./process.blog"; ``` 現在,讓我們建立一個新的路由來觸發該作業。 前往“app/api”,建立一個名為“blog”的新資料夾,並在一個名為“route.tsx”的新檔案中 新增以下程式碼: ``` import {client} from "@openai-assistant/trigger"; export async function POST(request: Request) { const payload = await request.json(); if (!payload.title || !payload.aId) { return new Response(JSON.stringify({error: 'Missing parameters'}), {status: 400}); } // We send an event to the trigger to process the documentation const {id: eventId} = await client.sendEvent({ name: "process.blog.event", payload }); return new Response(JSON.stringify({eventId}), {status: 200}); } ``` - 我們檢查標題和助理 ID 是否存在。 - 我們在 [Trigger.dev](http://Trigger.dev) 中觸發事件並發送訊息。 - 我們將事件 ID 傳送回客戶端,以便我們可以追蹤作業的進度。 ---  ## 前端🎩 沒什麼好做的! 在我們的「components」目錄中,建立一個名為「blog.component.tsx」的新檔案和以下程式碼: ``` "use client"; import {FC, useCallback, useEffect, useState} from "react"; import {ExtendedAssistant} from "@openai-assistant/components/main"; import {SubmitHandler, useForm} from "react-hook-form"; import {useEventRunDetails} from "@trigger.dev/react"; interface Blog { title: string, aId: string; } export const BlogComponent: FC<{list: ExtendedAssistant[]}> = (props) => { const {list} = props; const {register, formState, handleSubmit} = useForm<Blog>(); const [event, setEvent] = useState<string | undefined>(undefined); const addBlog: SubmitHandler<Blog> = useCallback(async (param) => { const {eventId} = await (await fetch('/api/blog', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify(param) })).json(); setEvent(eventId); }, []); return ( <> <form className="flex flex-col gap-3 mt-5" onSubmit={handleSubmit(addBlog)}> <div className="flex flex-col gap-1"> <div className="font-bold">Assistant</div> <select className="border border-gray-200 rounded-xl py-2 px-3" {...register('aId', {required: true})}> {list.map(val => ( <option key={val.id} value={val.aId}>{val.url}</option> ))} </select> </div> <div className="flex flex-col gap-1"> <div className="font-bold">Title</div> <input className="border border-gray-200 rounded-xl py-2 px-3" placeholder="Blog title" {...register('title', {required: true})} /> </div> <button className="border border-gray-200 rounded-xl py-2 px-3 bg-gray-100 hover:bg-gray-200" disabled={formState.isSubmitting}>Create blog</button> </form> {!!event && ( <Blog eventId={event} /> )} </> ) } export const Blog: FC<{eventId: string}> = (props) => { const {eventId} = props; const { data, error } = useEventRunDetails(eventId); if (data?.status !== 'SUCCESS') { return <div className="pointer bg-yellow-300 border-yellow-500 p-1 px-3 text-yellow-950 border rounded-2xl">Loading</div> } return ( <div> <a href={`http://localhost:3000/blog/${data.output.fileName}`}>Check blog post</a> </div> ) }; ``` - 我們使用「react-hook-form」來輕鬆控制我們的輸入。 - 我們讓使用者選擇他們想要使用的助手。 - 我們建立一個包含文章標題的新輸入。 - 我們將所有內容傳送到先前建立的路由並傳回作業的「eventId」。 - 我們建立一個新的「<Blog />」元件,該元件顯示載入直到事件完成,並使用新建立的教程新增指向我們部落格的連結。 將元件加入我們的“components/main.tsx”檔案中: ``` {assistantState.filter(f => !f.pending).length > 0 && <BlogComponent list={assistantState} />} ``` 我們完成了!  現在,讓我們新增部落格標題並點擊「生成」。  ---  ## 讓我們聯絡吧! 🔌 作為開源開發者,您可以加入我們的[社群](https://discord.gg/nkqV9xBYWy) 做出貢獻並與維護者互動。請隨時造訪我們的 [GitHub 儲存庫](https://github.com/triggerdotdev/trigger.dev),貢獻並建立與 Trigger.dev 相關的問題。 本教學的源程式碼可在此處取得: https://github.com/triggerdotdev/blog/tree/main/openai-blog-writer 感謝您的閱讀! --- 原文出處:https://dev.to/triggerdotdev/generate-blogs-with-chatgpt-assistant-1894
我將提到的七個開源專案不僅是雲端原生創新的重要工具,而且還在當今快節奏的數位世界中提供了策略優勢。 在本文中,我匯總了將這些開源專案設定為 **AWESOME** 層級的關鍵點! 🚀  <小時/> ## 1. [Winglang](https://dub.sh/wing-cloud)  Wing 推出了一種名為 **Winglang** 的程式語言,這是一種以雲端為導向的程式語言,允許開發人員建立分散式系統,以一等公民的身分利用雲端服務。 該語言引入了兩個執行階段:**預檢**和**飛行中**,它們以將 IAM 策略和網路拓撲的建立委託給編譯器的方式連接起來。 這種連結有助於解釋飛行中和飛行前概念的價值,因為它允許開發人員專注於業務邏輯而不是雲端機制,從而加快迭代週期並改進創意流程。 神奇之處在於**預檢**和**飛行中**執行階段: - **預檢:** 在編譯時執行一次的程式碼,並產生雲端應用程式的基礎架構配置。例如,設定資料庫、佇列、儲存桶、API端點等。 <br/> - **Inflight:** 在執行時執行並實作應用程式行為的程式碼。例如,處理 API 請求、處理佇列訊息等。Inflight 程式碼可以在雲端中的各種運算平台上執行,例如函數服務(例如 AWS Lambda 或 Azure Functions)、容器(例如 ECS 或 Kubernetes)、VM ,甚至是物理伺服器. 👇 <br/> {% cta https://dub.sh/wing-cloud %} 請star ⭐ Winglang {% endcta %} <小時/> ## 2.【裂變】(https://github.com/fission/fission)  Fission 是 Kubernetes 上的無伺服器功能框架。 - 用任何語言編寫短期函數,並將它們對應到 HTTP 請求(或其他事件觸發器)。 <br/> - 一個指令即可立即部署功能。無需建置容器,也無需管理 Docker 註冊表。 <br/> {% cta https://github.com/fission/fission %} 請star ⭐ Fission {% endcta %} <小時/> ## 3. [OpenFaaS](https://github.com/openfaas/faas)  在具有相同統一體驗的任何地方執行您的程式碼,並在擁有 Kubernetes 的任何地方部署 OpenFaaS。 - 在幾分鐘內將新功能部署到生產中,並知道它將擴展以滿足需求。 <br/> - 透過來自 Apache Kafka、AWS SQS、Postgresql、Cron 和 MQTT 的事件呼叫函數。 <br/> {% cta https://github.com/openfaas/faas %} 請star ⭐ OpenFaaS {% endcta %} <小時/> ## 4.【太空雲】(https://github.com/spacecloud-io/space-cloud)  Space Cloud 是一個基於 kubernetes 的開源平台,可讓您大規模建置、擴充和保護雲端原生應用程式。 - 它為您的資料庫和微服務提供即時 GraphQL 和 REST API,可以安全地直接從前端使用。 <br/> - 在 Kubernetes 上部署和擴充 Docker 映像。 <br/> {% cta https://github.com/spacecloud-io/space-cloud %} 請star ⭐ 太空雲 {% endcta %} <小時/> ## 5. [Pulumi](https://github.com/pulumi/pulumi)  在任何雲端上直觀地管理基礎設施、機密和配置。 - 使用您熟悉且喜愛的程式語言編寫基礎設施程式碼。使用具有自動完成、類型檢查和文件功能的 IDE 編寫語句來定義基礎架構。 <br/> - 透過單元測試測試您的程式碼,並透過 CI/CD 管道交付程式碼以進行驗證並部署到任何雲端。 <br/> {% cta https://github.com/pulumi/pulumi %} 請star ⭐ Pulumi {% endcta %} <小時/> ## 6. [Gitpod](https://github.com/gitpod-io/gitpod)  得到啟發, ~~檢查依賴關係,簽出分支,viewreadme.txt,安裝工具,執行建置,執行測試,~~ 開始建造。 - 環境之間的上下文切換,無需等待,無衝突。 <br/> - 分享每個分支的預覽環境,以便開發人員、設計人員和 QA 更快獲得回饋。 <br/> {% cta https://github.com/gitpod-io/gitpod %} 請star ⭐ Gitpod {% endcta %} <小時/> ## 7. [Knative](https://github.com/knative/serving)  Knative Serving 基於 Kubernetes 建置,支援將應用程式和功能作為無伺服器容器進行部署和服務。 - 無伺服器容器快速部署 <br/> - 自動縮放至零 <br/> - 路由與網路編程 <br/> - 已部署程式碼和配置的時間點快照 <br/> {% cta https://github.com/knative/serving %} 請加註星 ⭐ Knative {% endcta %} <小時/> 感謝您查看這七個強大的開源專案,您在雲端建置時應考慮這些專案。🥇 **支援開源軟體的最佳方式之一就是加一顆星🌟** --- 原文出處:https://dev.to/nathan_tarbert/level-up-your-cloud-experience-with-these-7-open-source-projects-37p8
開發者們大家好👋 今天,我將與您分享 5 個令人驚嘆的網站,它們對您的專案開發有幫助,也可以節省您的寶貴時間⏱。 ## 1️⃣ 扁平化圖標 Flaticon 是最大的圖示資料庫。您可以在這裡找到各種圖示、介面圖示、動畫圖示和貼紙,並可以以多種格式免費下載,例如 PNG、SVG、EPS、PSD 和 CSS。您也可以使用 Adobe After Effect 編輯現有圖示。  _造訪此處的網站:[https://www.flaticon.com](https://www.flaticon.com)_ ## 2️⃣ 大祭 Omatsuri 是一個開源 Web 應用程式,為開發人員提供 12 種不同的工具。它就像“多合一”應用程式。 - **三角形產生器:** 此工具用於為元素和偽元素產生 css 三角形樣式。 - **色調產生器:** 此工具用於產生給定顏色的色調和不同色調。 - **漸層產生器:** 此工具用於產生線性和徑向 css 漸層。 - **頁面分隔線:** 此工具用於使用 css 和 svg 影像產生頁面分隔線。 - **SVG 壓縮器:** 此工具用於使用 SVGO 壓縮 SVG 影像並轉換為 React 元件。 - **SVG -> JSX Converter:** 此工具用於將 SVG 圖示和插圖轉換為 React 元件或其他支援 JSX 的函式庫的元件。 - **base64 編碼器:** 此工具用於將圖像或檔案轉換為 Base64 並產生用作背景圖像的樣式。 - **虛假資料產生器:** 以 JSON Schema 格式產生各種真實的虛假資料,如地址、頭像、姓名、電話等。 - **符號集合:** 此工具包含常用 html 符號的集合:箭頭、標記、貨幣符號等。 - **Lorem ipsum:** 此工具產生不同類型的 lorem ipsum 文字。 - **CSS 遊標:** 這也是所有現有 CSS 遊標屬性值的集合。 - **鍵盤事件程式碼:** 此工具提供 JavaScript 事件鍵盤程式碼值。  _造訪此處的網站:[https://omatsuri.app](https://omatsuri.app/) Github 連結:[https://github.com/rtivital/omatsuri](https://github.com/rtivital/omatsuri)_ ## 3️⃣ 快速 API RapidAPI 是最大的 API 中心。它提供了大量涵蓋天氣、社交媒體、電子商務、金融等各個類別的 API。您可以輕鬆搜尋 API 並將其整合到您的應用程式中。這裡並非所有 API 金鑰都是免費的,該網站提供免費和付費訂閱。 對於某些 api 金鑰,您需要付費才能使用它們並將其整合到您的應用程式中。  _造訪此處的網站:[https://rapidapi.com/hub](https://rapidapi.com/hub)_ ## 4️⃣ 故事集 Storyset 平台為您提供精彩的免費客製化插圖,供您在專案中使用。使用 Storyset,您可以輕鬆自訂、製作動畫和下載插圖,以建立精美的應用程式,尤其是登陸頁面。它還提供了編輯插圖以及以 PNG 和 SVG 格式下載的選項。  _造訪此處的網站:[https://storyset.com](https://storyset.com)_ ## 5️⃣ 轉變 Transform.tools 是一個開源網站,讓您能夠轉換各種元素,例如 HTML 到 JSX、JavaScript 到 JSON、CSS 到 JS 物件等等。每當您需要快速轉換或轉換任何內容時,它都將真正節省時間。  _造訪網站:[https://transform.tools](https://transform.tools) Github連結:[https://github.com/ritz078/transform](https://github.com/ritz078/transform)_ ⬇ 如果您使用過這些工具,請在下面發表評論並分享您的經驗。另外,提及您最常使用的工具。我會將它們包含在下一篇文章中。 感謝您的閱讀❤ {% 嵌入 https://dev.to/dev_kiran %} --- 原文出處:https://dev.to/dev_kiran/top-5-killer-websites-for-developers-2knm
這是[使用 Express、Sequelize 和 Postgres 建立 API](https://www.oriechinedu.com/posts/performing-crud-with-sequelize/) 的第三部分。在[第二部分](https://www.oriechinedu.com/posts/performing-crud-with-sequelize/)中,我們建立了簡單的API端點來示範Sequelize中的CRUD操作。在本文中,我們將重點放在為第二部分中建立的 API 端點編寫端到端測試。 ### 術語解釋 - **端對端測試** - 一種測試類型,用於測試應用程式從開始到結束的流程是否如預期運作。這也稱為功能測試。此類測試的一個範例是測試端點或路由,其中涉及測試端點工作所需的所有內容,例如資料庫連接、依賴項等。 - **測試執行器** - 在給定目錄或檔案中取得原始程式碼(測試)、執行測試並將結果寫入控制台或任何指定位置的程式庫或工具,例如 Jest、Mocha。 - **Jest** - [Jest](https://jestjs.io/) 是 Facebook 開發的 JavaScript 測試框架。它以最少的配置開箱即用,並具有內建的測試執行器、斷言庫和模擬支援。 - [**Supertest**](https://www.npmjs.com/package/supertest) - 用於測試 Node.js HTTP 伺服器的函式庫。它使我們能夠以程式設計方式向 HTTP 伺服器發送 HTTP 請求(例如 GET、POST、PATCH、PUT、DELETE)並獲取結果。 現在我們已經解釋了基本術語,讓我們深入了解主要業務。 如果您一直按照先前的[文章](https://www.oriechinedu.com/posts/performing-crud-with-sequelize/)進行操作,那麼請在您最喜歡的文字編輯器中開啟它,否則克隆使用的儲存庫[此處](https://github.com/oriechinedu/sequelize-with-postgres-tutorial)。 **第 1 步 - 安裝 Jest 和 supertest** 打開終端機並“cd”到專案根目錄並執行以下命令: ``` npm install --save-dev jest supertest ``` **步驟 2 - 設定 Jest** 打開“package.json”並將以下程式碼新增至其中。 ``` "jest": { "testEnvironment": "node", "coveragePathIgnorePatterns": [ "/node_modules/" ] }, ``` 這是我們測試 API 時需要設定 jest 的基本配置。您希望 `jest` 忽略的任何檔案都放置在 `"coveragePathIgnorePatterns"` 內。 `"coveragePathIgnorePatterns"` 指定一個與要排除的目錄相符的正規表示式,在我們的例子中,我們希望它忽略 `node_modules` 目錄。 接下來我們新增“test”腳本。在 `package.json` 的 `scripts` 部分中,加入以下腳本: ``` "test": "jest" ``` **步驟 3 - 測試配置** 現在,讓我們確認「jest」已準備好執行我們的測試。在終端機中執行“npm test”。您會注意到控制台上列印如下所示的錯誤,這表示「jest」已設定。  讓我們新增一個簡單的測試來驗證配置。建立一個名為「tests」的新目錄並新增一個新檔案「sample.test.js」。在「sample.test.js」中,加入以下程式碼: ``` describe('Sample Test', () => { it('should test that true === true', () => { expect(true).toBe(true) }) }) ``` 現在,執行“npm test”,您將得到如下所示的輸出:  ##### Jest 如何辨識測試檔? Jest 以三種方式辨識測試文件: - 副檔名為「.test.js」的文件 - 副檔名為「.spec.js」的文件 - `__tests__` 資料夾或目錄中的所有檔案。 ## 測試 API 端點 現在我們已經設定了測試環境,是時候開始測試 API 端點了。由於我們的端點需要向資料庫發出請求,因此我們需要設定一個測試資料庫。設定測試資料庫的原因是每次執行測試時我們都會刪除該資料庫。每次執行測試時刪除資料庫可確保測試的完整性。也就是說,如果一個測試是在資料庫中建立一個「post」記錄,我們要確保在測試執行之前資料庫中沒有「post」記錄,這樣,我們就可以確定得到的結果從測試中。 **第 4 步 - 建立測試資料庫** 在本文的[第一部分](https://www.oriechinedu.com/posts/getting-started-with-sequelize-and-postgres/)中,我們建立了兩個資料庫,一個用於開發,另一個用於測試。如果您尚未建立測試資料庫,請依照[連結](https://www.oriechinedu.com/posts/getting-started-with-sequelize-and-postgres/)建立測試資料庫。 **步驟 5 - 設定測試腳本** 我們需要以下腳本: - `pretest` - `pretest` 是一個 npm 腳本,當呼叫 `npm test` 指令時會自動呼叫。我們將掛接命令來更改環境以進行測試,並在每次測試執行之前刷新資料庫。 - `migrate:reset`:此命令將負責在每次測試執行之前刷新資料庫。 現在編輯“package.json”的“scripts”,如下所示: ``` "scripts": { "start-dev": "nodemon index.js", "migrate": "npx sequelize-cli db:migrate", "migrate:reset": "npx sequelize-cli db:migrate:undo:all && npm run migrate", "test": "cross-env NODE_ENV=test jest --testTimeout=10000", "pretest": "cross-env NODE_ENV=test npm run migrate:reset" } ``` 腳本修改需要注意的地方: - [`cross-env`](https://www.npmjs.com/package/cross-env) - 用於設定環境變數的與作業系統無關的套件。我們用它將`NODE_ENV`設為`test`,以便我們的測試可以使用測試資料庫。執行以下命令來安裝跨環境。 ``` npm i -D cross-env ``` - `--testTimeout` 標誌 - 這會增加 Jest 的預設逾時時間,即 5000 毫秒。這很重要,因為測試執行者需要在執行測試之前刷新資料庫。 **第 6 步 - 測試腳本** ``` npm test ``` 如果一切正常,您應該在終端機上看到以下輸出:  仔細觀察上面的螢幕截圖,您會注意到一行 _`using environment "test"`_ 表示 `cross-env` 已更改了 `NODE_ENV`。 **最後一步 - 測試路由/端點** 現在,讓我們開始為端點編寫測試。在測試目錄中建立一個名為routes.test.js的文件 ``` touch tests/routes.test.js ``` - **測試建立後端點** 將以下程式碼複製到“tests/routes.test.js”中: ``` const request = require('supertest') const app = require('../server') describe('Post Endpoints', () => { it('should create a new post', async () => { const res = await request(app) .post('/api/posts') .send({ userId: 1, title: 'test is cool', }) expect(res.statusCode).toEqual(201) expect(res.body).toHaveProperty('post') }) }) ``` - `describe` 函數用於將相關測試分組在一起 - `it` 是執行實際測試的 `test` 函數的別名。 -“expect”函數使用一組“matcher”函數測試值。 請造訪 [Jest 文件](https://jestjs.io/docs/en/api.html) 以取得 jest 函數的完整清單和詳細資訊。 現在,執行測試 ``` npm test ``` 輸出如下圖所示:  有關所有端點測試的完整程式碼,請檢查[儲存庫](https://github.com/oriechinedu/sequelize-with-postgres-tutorial/blob/master/tests/routes.test.js)。 ### 結論 我們已經能夠完成為與資料庫互動的 API 端點編寫測試的過程。在本文的最後部分,我將撰寫有關將 CI/CD 和程式碼覆蓋工具整合到測試環境的文章。在那之前請繼續關注。 如果您對改進文章有任何疑問或建議,請隨時與我聯繫。您也可以透過下面的評論部分分享您的想法。謝謝! _本文最初發表在我的[部落格](https://www.oriechinedu.com/posts/testing-nodejs-express-api-with-jest-and-supertest/)_ --- 原文出處:https://dev.to/nedsoft/testing-nodejs-express-api-with-jest-and-supertest-1km6
我很高興與 [Keep](https://github.com/keephq/keep) 的執行長兼聯合創始人 Tal 交談。 它最初是一個 CLI 工具,隨著時間的推移,變成了一個警報聚合工具。 如今,他們擁有近 3,000 顆星。 **您可以在這裡觀看完整影片:** {% 嵌入 https://www.youtube.com/watch?v=eykb1zbDwQo %} <小時/> 開始 ------------ 他們製作了一個非常基本的警報 CLI 工具並將其發佈在 Hackernews 上 - **“顯示 HN:”** 他們乘坐飛機,當他們著陸時,**他們看到了 600 顆星星**。 [Hackernews](https://hackernews.com?utm_source=nevo.github20k.com&utm_medium=referral&utm_campaign=how-keephq-got-their-first-2-000-stars)是一個有趣的網站。它非常醜陋,牽引力很大,而且很難進入。 我在 Hackernews 上看到並推出了很多產品。雖然在 Hackernews 上發表一篇文章很困難,但 **「Show HN」** 的文章要容易得多。 這通常是一個秘密武器,因為你也許可以每年做一次 - 最好與更多管道合作,以獲得更好的機會在 GitHub 上流行。 他們創造了更多工具,例如[gnip](https://www.gnip.io/?utm_source=nevo.github20k.com&utm_medium=referral&utm_campaign=how-keephq-got-their-first-2-000-stars),以及雖然這個工具今天沒有帶來大量流量,但在發布之日就帶來了許多流量。 您會發現,對於您建立的每個副專案,您都可以在 Hackernews (Show HN) 和 Product Hunt 中啟動它。 我的建議? **目標是每月發布一次新專案。** **HACK:** 最近,一些隨機的人在 Hackernews 上發布了 **Novu** 組織頁面。我不知道它是如何被接受的,但它為我們帶來了 400 顆星。 [查看此處的貼文](https://news.ycombinator.com/item?id=38419513&utm_source=nevo.github20k.com&utm_medium=referral&utm_campaign=how-keephq-got-their-first-2-000-stars) <小時/>  與社區一起尋找產品 ------------------------------------------- 雖然 Hackernews 對開源社群(許多早期採用者)非常友好,但 Product Hunt 感覺更像是獨立駭客/非開發人員的工具。 **目標是獲得盡可能多的讚成票並達到列表的頂部。** 您通常應該將 Product Hunt 與其他管道結合。 如果您剛開始並想要星星 - 將您的 GitHub 作為您的“存取”URL。 如果您是一家更知名的公司並且希望獲得更多潛在客戶並預訂會議,請加入您的**網站 URL。** **對於第一次啟動,我通常會瞄準 GitHub 存儲庫。** Keep 的社群很小,但仍然佔據了第一天的份額。 最好的創始人不會讓運氣引導他們。 **這是他們所做的:** * 他們在社交媒體上發布了有關其發布的訊息(像大多數人一樣) * 他們嘗試聯繫盡可能多的人來幫助他們。 * 他們建造了一個秘密武器工具! [Slackline](https://github.com/talboren/slackline?utm_source=nevo.github20k.com&utm_medium=referral&utm_campaign=how-keephq-got-their-first-2-000-stars) <小時/>  鬆弛的線路 ------------------- 塔爾不久前向我展示了這個工具,從那時起我就一直使用它。 當您是一家小型新創公司時,您必須完成不可能的任務,從 0 到 1。**使用您擁有的所有可能的選項。** Slackline 正是為此而設計的。您可以加入任何 Slack 群組,並向頻道中的每個可能的人發送 DM。 有幾個選項: 1. 您可以在 Slack 頻道上使用它來推動對您的產品的回饋或從社群成員那裡獲得幫助來完成不同的事情。 2. 在 Product Hunt 上向人們尋求協助。 雖然數字 2 聽起來有點冒犯,但它確實有效 - 他們獲得了當天的第一名以及名譽和榮耀🎩 <小時/>  使用賞金 -------------- 您可以對 [Algora](https://algora.io?utm_source=nevo.github20k.com&utm_medium=referral&utm_campaign=how-keephq-got-their-first-2-000-stars) 的問題進行懸賞,告訴您這會擴大你的社區——可能不會,但會給你帶來更多的可信度。 如果您剛開始,Algora 可以幫助您獲得更多貢獻者(在貢獻者清單中)並使您看起來更可信。 然而,請記住,為了錢而來的貢獻者通常不會免費做同樣的事情(並非總是如此)。 {% cta https://github.com/keephq/keep %}在 GitHub 上加星 Keep{% endcta %} --- ## 我邀請您註冊我的電子報。 若符合以下條件,本通訊對您有好處: - 您正在考慮開源您的產品(或建立新產品)。 - 您正在考慮開啟一個副產品並將其開源(以反映您的主要產品)。 - 您從事科技業,希望在沒有明星/沒有 GitHub 趨勢的情況下實現成長。 這是一份 100% 免費的時事通訊(並且永遠如此)。請隨時註冊: [https://gitroom.com](https://gitroom.com/)  --- 原文出處:https://dev.to/github20k/how-keephq-got-their-first-2000-stars-l7i
想像一下,您的任務是在您正在開發的產品中實現一項重要的新功能。這就是您一直在等待的機會 - 每個人都會看到您是多麼出色的 10 倍開發人員!你打開一個你想要嘗試的最酷的新庫和設計模式的列表,然後直接進入它,完整的“地下室”模式。一週後,你勝利地出現並提出了你完美的拉取請求! **但是,團隊中的高級開發人員立即拒絕了** - ***「太複雜了,你應該簡單地使用庫 X 並重用 Y。」***。什麼!?顯然,他們不明白你的解決方案有多天才,很快,你就會看到關於你的 PR 的 100 條評論以及接下來幾天的重構。 如果有一種方法可以在實施一切之前了解 X 和 Y 就好了。是的,它就是 RFC!  我們將透過[關於在 Wasp 中實現身份驗證的 RFC](https://www.notion.so/RFC-Auth-without-user-define-entities-6d2925439627456ab01b74ff4b4cd087?pvs=21) 的範例來了解它。 **[Wasp](https://kdta.io/github-wasp-lang-wasp_4) 是一個建置在 React、Node.js 和 Prisma 之上的全棧框架,提供了大量開箱即用的功能這是建置和部署應用程式的最快方法**。它還附帶一個免費的 GPT 支援的程式碼庫產生器 [MAGE](https://usemage.ai/),已用於建立超過 30,000 個應用程式。 讓我們深入了解一下! ## 支持我們! 🙏⭐️  如果您覺得這篇文章有幫助,請[考慮在 Github 上給我們一顆星](https://github.com/wasp-lang/wasp)!我們在 Wasp 所做的一切都是開源的,您的支援幫助我們使 Web 開發變得更容易,並激勵我們撰寫更多這樣的文章。  {% cta [https://kdta.io/github-wasp-lang-wasp_3](https://www.github.com/wasp-lang/wasp) %} ⭐️ 感謝您的支持🙏 {% endcta %} ## 那麼,什麼是 RFC?  RFC 代表 *Request For Comments*,簡單地表示 **「**提議更改程式碼庫以解決特定問題的文件。」。 **其主要目的是在實施開始之前找到解決問題的最佳方法。** RFC 最初由開源社群採用,但如今,它們幾乎被用於任何類型的開發者組織。 您在業界可能會遇到此類文件的其他名稱,例如 TDD(*技術設計文件*)或 SDD(*軟體設計文件*)。有些人會爭論它們之間的區別,但我們不會。 **有趣的事實**:RFC 是由 IETF(*網路工程任務組*)發明的,該組織是我們今天使用的一些最重要的網路標準和協議背後的工程組織!不算太寒酸吧? ## 什麼時候該寫 RFC,什麼時候可以跳過?  那麼,為什麼要費勁去寫你最終將要編碼的內容,而不是節省時間並簡單地去做呢? **如果您正在處理錯誤或相對簡單的功能,非常清楚必須做什麼並且不會影響專案結構,那麼就不需要 RFC - 啟動 IDE 並開始破解!** 但是,如果您要引入一個全新的概念(例如,引入基於角色的權限系統)或更改專案的架構(例如,新增對執行後台作業的支援),那麼您可能需要在輸入「git」之前退一步checkout -b my-new-feature` 並深入到那個甜蜜的編碼區域。 綜上所述,有時很難確定是否應該編寫該 RFC。也許這是一個更突出的功能,但你以前做過類似的事情,並且你已經在頭腦中規劃好了一切,而且幾乎沒有任何疑問。為了解決這個問題,我喜歡使用以下一個簡單的啟發式方法:**是否有不只一種明顯的方法來實現此功能?我們是否必須選擇一個新的庫/服務?** 如果這兩個問題的答案都是“否”,那麼您可能不需要 RFC。否則,需要進行討論,而 RFC 是解決問題的方法。做吧。  ## 這對我有什麼好處? 我們已經確定瞭如何決定「何時」編寫 RFC,但這也是您應該這樣做的「原因」: - **你將整理你的想法並變得清晰**。如果您決定編寫 RFC,則表示您正在處理一個不平凡的開放式問題。把事情寫下來將有助於提煉你的想法並客觀地看待它們。 - **與剛開始編碼相比,你會學到更多**。你會給自己空間去探索不同的方法,常常會發現一些你原本沒有想到的東西。 - **您將眾包團隊的知識。** 透過向您的團隊尋求回饋(因此請求評論),您將全面了解您正在解決的問題並填補任何剩餘的空白。 - **您將增進團隊對程式碼庫的理解。** 透過在 RFC 上進行協作,團隊中的每個人都會了解您正在做什麼以及最終是如何做到的。這意味著下次有人必須接觸那部分程式碼時,他們將需要問你更少的問題(===更多不間斷的程式碼時間!)。 - **公關審查將會*更*順利**。還記得本文開頭的情況嗎?當你的 PR 因為「太複雜」而被拒絕時?這是因為審閱者忽略了上下文,並且您在沒有獲得團隊其他成員事先支持的情況下進行了相當大的更改。透過先編寫 RFC,您將永遠不會再遇到這種情況。 - **您的文件已經完成了 50%!** 需要明確的是,RFC 不是最終文件,您不能簡單地指出它,但您可以重複使用很多內容 - 圖像、圖表、段落等。 哇,這聽起來太棒了,我現在就想提出一個新功能,這樣我就可以為其編寫 RFC!開個玩笑,首先瀏覽 RFC 會讓編碼部分變得更加有趣 - 你確切地知道你需要做什麼,並且你不需要質疑你的方法以及建立 PR 後將如何接收它。 ## 好吧,好吧,我被賣了!那麼,我該如何寫一篇呢? 很高興你問了!使用了許多不同的格式,或多或少是正式的,但我更喜歡保持簡單。我們在 Wasp 編寫的 RFC 不遵循嚴格的格式,但有一些共同的部分: - **元資料** - 標題、日期、審稿人等… - **問題/目標** - 你要解決什麼 - **建議的解決方案**(或更多) - **實施概述** - **評論/開放式問題** 這幾乎就是它的要點!其中每一個都可以進一步細分和細化,但這是您可以開始的基本輪廓。 現在讓我們在[Wasp 中的身份驗證](https://wasp-lang.notion.site/RFC-Auth-without-user-defined-entities-6d2925439627456ab01b74ff4b4cd087? 上查看它們在實踐中的樣子。 ) 範例。 ## 元資料 ⌗  這是非常不言自明的 - 您可能想要追蹤有關 RFC 的一些基本資訊 - 狀態、建立日期等。 一些模板還明確列出了審查者以及他們對RFC 的「批准」狀態- 我們沒有它,因為我們是一個溝通速度很快的小團隊,但對於不是每個人都認識每個人的大型團隊來說,它可以很方便,並且您希望有更多的流程(例如,在指導初級開發人員時)。  ## 問題🤔 這就是事情變得有趣的地方。 **您對問題或需要實現的目標/功能以及為什麼需要這樣做的定義越好,以下所有步驟就會越容易**。因此,即使在開始編寫 RFC 之前,這也是值得投資的事情 - 確保與所有相關方(例如產品所有者、其他開發人員,甚至用戶)進行交談,以加深您對要解決的問題的理解。 透過這樣做,您也很可能獲得有關可能解決方案的初步提示和指示,並對您所處的問題空間有一個粗略的認識。  以下是上面範例中的一些提示: - **從高級摘要開始** - 這樣,讀者可以快速決定這是否與他們相關以及是否應該繼續閱讀。 - **提供一些背景** - 解釋一下世界的現狀。這可以是單一句子或整個章節,這取決於目標受眾。 - **清楚地陳述問題/目標** - 解釋為什麼會出現問題並將其與用戶/公司的痛苦聯繫起來,以便動機明確。 - **如果可能的話,提供額外的細節** - 圖表、程式碼範例… → 任何可以幫助讀者更快到達「頓悟」時刻的內容。使用可折疊部分的額外要點是,RFC 的中心部分保持可消化的長度。 如果您完成了所有這些,那麼您已經踏上了通往優秀 RFC 的道路!由於明確定義問題至關重要,所以不要害怕加入更多問題並進一步分解問題。 ### 非目標🛑 這是“問題”的子部分,有時非常有價值。在此程式碼庫變更中編寫我們不想要或不會做的事情可以幫助設定期望並更好地定義其範圍。 例如,如果我們正在努力為我們的應用程式加入基於角色的身份驗證系統,人們可能會認為我們還將為其建立某種管理面板來管理使用者和新增/刪除角色。透過明確聲明不會完成(並簡要解釋原因 - 不需要,這會花費太長時間,...),審查者將更好地理解您的目標是什麼,並且您將跳過不必要的討論。 ## 解決方案與實作🛠️ 一旦我們知道我們想做什麼,我們就必須找出最好的方法!您可能已經在“問題”部分暗示了可能的解決方案,但現在是更深入研究的時候了 - 研究不同的方法,評估它們的優缺點,並概述它們如何適合現有系統。 這一部分可能是最自由的形式 - 因為它很大程度上取決於您正在做的事情的性質,所以在這裡施加許多限制是沒有意義的。您可能希望停留在更高的水平,例如係統架構,或者您可能需要深入研究程式碼並開始編寫您需要的部分程式碼。因此,我沒有一個確切的格式供您遵循,而是一組指南: ### 寫偽程式碼 RFC 的目的是傳達想法和原則,而不是編譯和涵蓋所有邊緣情況的生產級程式碼。隨意發明/想像/草繪任何您需要的東西(例如,想像您已經有一個發送電子郵件的功能並使用它,即使您沒有),並且不要用實現細節來妨礙您自己或讀者(除非這正是RFC 的內容)。 最好從較高的級別開始,然後當您意識到需要它或其中一位審閱者建議時再深入。 ### 了解其他人是如何做到的  根據您正在開發的產品類型,您發現這一點的方式可能會有所不同,但幾乎總是有一種方法可以做到這一點。如果您正在開發像 [Wasp](https://github.com/wasp-lang/wasp) 這樣的開源工具,您可以簡單地查看其他流行的解決方案(也是開源的)並了解它們是如何做到的它。如果您正在開發 SaaS,並且需要弄清楚是否使用 cookie 還是 JWT 進行身份驗證,您可能有一些朋友以前這樣做過,您可以詢問他們。最後,只需 Google/GPT 即可。 為什麼這麼有幫助? **原因是它讓您(和審閱者)對您的解決方案充滿信心。如果其他人以這種方式成功做到了,這可能是一個有前途的方向。**它還可能幫助您發現以前沒有想到的方法,或者作為您可以建置的基礎。當然,永遠不要認為任何事情都是理所當然的,並考慮到您情況的具體需要,而一定要利用他人的知識和專業知識。 ### 留下未完成的事情並保持骯髒 RFC 的要點是「C」部分,因此協作(是的,我知道它實際上代表「_comments_」)。這不是一個你必須獲得滿分並且不問任何問題的測試 - 如果發生這種情況,你可能一開始就不應該編寫 RFC。 解決問題需要團隊的努力,而你只是第一個嘗試解決問題並推動事情向前發展的人。您的任務是盡可能合理地奠定基礎(完善問題,探索解決問題的多種方法,辨識發現的新子問題),以便審閱者可以快速掌握狀態並提供有效的反饋,指導需要的地方最多。 **RFC 的主要工作是確定最重要的問題並將審閱者的注意力引導到這些問題上,而不是解決它們。** 您正在編寫的 RFC 應該被視為一個討論區和一個正在進行的工作,而不是一件在展示在觀眾面前之前必須完善的藝術品。 ## 評論和開放式問題 🎯 在文件的最後一部分中,您可以總結主要思想並突出顯示最大的未決問題。在瀏覽所有內容之後,提醒讀者他的注意力在哪裡最有價值可能會有所幫助。 ## 現在我知道何時以及如何寫 RFC!您有任何我可以用作起點的模板嗎? 當然!如前所述,我們的格式非常輕量級,但請隨意查看[我們用作示例的 RFC](https://wasp-lang.notion.site/RFC-Auth-without-user-define-entities - 6d2925439627456ab01b74ff4b4cd087?pvs=4) 獲得靈感。您的公司也可能已經有他們推薦的現成範本。 以下是您可以使用和/或適應您的需求的一些內容: - [Squarespace RFC 範本](https://engineering.squarespace.com/s/Squarespace-RFC-Template.pdf) - _您有推薦的範本嗎?我很高興將其列在這裡!_ ## 我應該使用什麼工具來寫 RFC?有這麼多選擇! 您使用的確切工具可能是 RFC 中最不重要的部分,但它仍然很重要,因為它圍繞它設置了工作流程。如果您的公司已經選擇了一種工具,那麼當然要堅持使用。如果沒有,以下是我遇到的最常見的選擇,以及快速評論: - **Google 文件** - 經典選擇。超級容易對文件的任何部分進行評論,這是最重要的功能。 - **概念** - 也非常適合協作,此外還提供一些 Markdown 元件,例如可折疊和表格,這可以使您的 RFC 更具可讀性。 - **Github 問題/PR** - 有時會使用它,特別是對於 OSS 專案。缺點是很難對文件的特定部分進行註釋(只能對整行進行註釋),而且插入圖表也相當笨拙。優點是所有內容(程式碼和 RFC)都保留在同一個平台上 我們目前使用 Notion,但以上任何一個都可以是不錯的選擇。 ## 概括  正如在 RFC 末尾編寫摘要是最佳實踐一樣,我們也會在這裡做同樣的事情!這篇文章比我預期的要長,但是有很多東西要提到 - 我希望你會發現它有用! 最後,**能夠清楚地表達你的想法,提出問題,並根據團隊的反饋客觀地分析可能的解決方案,這將幫助你開發正確的東西,這是最終的生產力黑客**。 這就是您成為真正的 10 倍工程師的方法。感謝您的閱讀,下次再見! --- 原文出處:https://dev.to/wasp/develop-the-right-thing-every-time-and-become-a-10x-engineer-the-art-of-writing-rfcs-2mc6
在當今動態的軟體開發世界中,保持最新的工具、程式庫和框架對於開發人員來說至關重要。 GitHub 提供了寶貴的儲存庫寶庫,可顯著提高您的開發技能和專業知識。 我整理了每個開發人員都應該了解的 19 個 GitHub 儲存庫的列表,為學習、實踐和靈感提供了豐富的資源。 每個儲存庫都分為子類別,以便於導航。我還加入了直接連結和描述,以便立即獲得印象。 --- ## 1\. [集算器SPL](https://github.com/SPLWare/esProc)(贊助) 集算器SPL是新一代資料處理語言,整合SQL資料庫,支援進階分析與平行處理。 透過集算器SPL,您可以輕鬆轉換和分析大量資料集,發現隱藏的模式和趨勢,並從資料中獲得可操作的見解。一些主要功能包括: **⚡ 頂級效能:** 透過集算器SPL的最佳化演算法和高效率的記憶體管理體驗快速的處理速度。 **🚀 豐富的函數庫:** 存取全面的預先建構函數集合,滿足各種資料操作任務。 **✨ 直覺的語法:** 享受清晰簡潔的語法,提升程式碼的可讀性和可維護性。 **👨💻 Java整合:** 透過JDBC將集算器SPL腳本無縫整合到Java程式中,縮小資料分析和應用開發之間的差距。 **🧙♀️獨立執行:**獨立執行集算器SPL腳本,超越傳統限制,擴展您的資料處理能力。  ⭐ 支援他們的 GitHub 倉庫:[https://github.com/SPLWare/esProc](https://github.com/SPLWare/esProc) --- ## 🌱 學習編碼 ### 2\. [awesome-roadmaps](https://github.com/liuchong/awesome-roadmaps) >***⭐*** *GitHub 星數 3k+* 各種程式語言、框架和工具的路線圖集合。 ### 3\. [awesome-courses](https://github.com/prakhar1989/awesome-courses) >***⭐*** *GitHub 星數超過 50k* 用於學習程式設計、網路開發和其他技術技能的精選線上課程清單。 ### 4\. [free-certifications](https://github.com/cloudcommunity/Free-Certifications) >***⭐*** *GitHub 星數 12k+* 各種技術主題的認證和培訓課程的綜合清單。 ### 5\. [awesome-algorithms](https://github.com/tayllan/awesome-algorithms) >***⭐*** *GitHub 星數超過 15k* 用於學習和練習演算法和資料結構的資源集合。 ### 6\. [awesome-interview-questions](https://github.com/DopplerHQ/awesome-interview-questions) >***⭐*** *GitHub 星數 59k+* 軟體開發角色的常見面試問題彙編。 --- ## 🧑💻 建設專案 ### 7\. [awesome-for-beginners](https://github.com/MunGell/awesome-for-beginners) >***⭐*** *GitHub 星數 58k+* 適合初學者的專案想法和資源清單。 ### 8\. [應用程式想法](https://github.com/florinpop17/app-ideas) >***⭐*** *GitHub 星數 69k+* 適用於各種程式設計平台和技能水平的大量應用程式創意。 ### 9\. [邊玩邊學](https://github.com/lmammino/awesome-learn-by-playing) >***⭐*** *GitHub 星數 115+* 一系列遊戲和互動專案,可提高編碼技能。 ### 10\. [專案為基礎的學習](https://github.com/practical-tutorials/project-based-learning) >***⭐*** *GitHub 星數 123k+* 針對各個技術領域的基於專案的學習資源清單。 ### 11\. [build-your-own-x](https://github.com/codecrafters-io/build-your-own-x) >***⭐*** *GitHub 星數 229k+* 關於如何建立您自己的程式語言、工具和框架的指南集合。 --- ## 🚀 工具和資源 ### 12\. [免費開發](https://github.com/ripienaar/free-for-dev) >***⭐*** *GitHub 星數 76k+* 為開發人員提供的免費工具和資源的精選清單。 ### 13\. [awesome-selfhosted](https://github.com/awesome-selfhosted/awesome-selfhosted) >***⭐*** *GitHub 星數 157k+* 用於各種目的的自託管軟體應用程式的集合。 ### 14\. [棒設計工具](https://github.com/goabstract/Awesome-Design-Tools) >***⭐*** *GitHub 星數超過 30k* 用於各種設計目的的設計工具的綜合清單。 ### 15\. [awesome-stock-resources](https://github.com/neutraltone/awesome-stock-resources) >***⭐*** *GitHub 星數 11k+* 免費和付費庫存照片、圖標和其他設計資源的集合。 --- ## 💯 模式與最佳實踐 ### 16\. [awesome-sre](https://github.com/dastergon/awesome-sre) >***⭐*** *GitHub 星數超過 10k* 用於學習和實施站點可靠性工程實踐的資源集合。 ### 17\. [棒設計模式](https://github.com/DovAmir/awesome-design-patterns) >***⭐*** *GitHub 星數 33k+* 軟體設計模式及其應用的目錄。 ### 18\. [美麗文件](https://github.com/matheusfelipeog/beautiful-docs) >***⭐*** *GitHub 星數 8k+* 用於建立美觀且有效的文件的資源和最佳實踐的集合。 ### 19\. [很棒的可擴展性](https://github.com/binhnguyennus/awesome-scalability) >***⭐*** *GitHub 星數 49k+* 有關軟體系統可擴展性、效能和優化的精選資源清單。 --- 寫作一直是我的熱情,幫助和激勵人們讓我感到很高興。如果您有任何疑問,請隨時與我們聯繫! 透過訂閱[我的電子報](https://madzadev.substack.com/),確保獲得我發現的最好的資源、工具、生產力技巧和職業發展技巧! --- 原文出處:https://dev.to/madza/19-github-repositories-every-developer-should-bookmark-13bd
如今,每個人都想成為我們所謂的「10 倍開發人員」。然而,這個術語經常被誤解和高估。 從本質上講,在我看來,高效或10 倍開發人員是指能夠利用所有可用工具來發揮其優勢的人,讓這些工具處理冗餘和重複性的任務,並使他能夠專注於複雜和創造性的工作。以下是成為 10 倍開發人員的一些提示和技巧: ## 使用腳本自動執行重複任務: 對於尋求優化工作流程的開發人員來說,透過腳本自動執行重複任務是一個遊戲規則改變者。 透過弄清楚哪些任務可以自動化,例如測試和部署,然後讓腳本處理它們,開發人員可以專注於工作中更具挑戰性的部分,並在過程中節省大量時間。 例如,此腳本建立一個新的專案資料夾,由使用者輸入命名,並在檔案總管中開啟它: ``` import os import subprocess def create_project_folder(project_name): # Create a new folder for the project os.makedirs(project_name) # Open the project folder in the file explorer subprocess.run(['explorer', project_name]) # Get the project name from the user project_name = input("Enter the name of your new project: ") # Call the function to create and open the project folder create_project_folder(project_name) ``` ## 鍵盤快速鍵掌握: 掌握程式碼編輯器或 IDE 中的鍵盤快速鍵對於加快編碼工作流程至關重要。 VS 程式碼的一些快捷方式範例: `Ctrl + P`:快速檔案導航,讓您可以按名稱開啟檔案。 `Ctrl + Shift + L`:選取目前單字的所有出現位置。 `Ctrl + /`:切換行註釋 `Ctrl + A`:選擇目前檔案中的所有行 `Ctrl + F`:尋找程式碼中的特定文本 `Ctrl + Shift + P`:開啟各種指令的指令面板。 `Alt + 向上/向下箭頭`:向上或向下移動目前行。 `Shift + 右箭頭 (→)`:選擇遊標右側的字元。 `Shift + 向左箭頭 (←)`:選擇遊標左側的字元。 「Alt + 點擊」:按住 Alt 鍵並點擊程式碼中的不同位置以建立多個遊標,從而允許您同時在這些位置進行編輯或鍵入。 ## 不要過度設計: 避免過度設計解決方案的誘惑。加入不必要的程式碼或架構複雜性是許多工程師和程式設計師遇到的常見陷阱。 然而,保持簡單不僅有利於您目前的工作流程,而且還可以讓其他人在將來更容易理解您的程式碼並就您的程式碼進行協作。 ## 掌握版本控制工作流程: 善於使用版本控制工作流程(例如使用 Git)將極大地提高您的工作效率,並幫助您的團隊在不妨礙彼此的情況下協同工作。 特別是使用 GitKraken 等工具或任何其他 GUI 替代品,提供直覺的介面,簡化分支、合併和追蹤變更等任務,使協作更加順暢。  如果出現問題,您可以輕鬆恢復到先前的狀態。這就像有一個安全網,可以確保每個人的工作順利配合,從而使建立軟體的整個過程更快、壓力更小。 ## 利用現有元件和函式庫: 不要重新發明輪子,而是使用經過嘗試和測試的可用解決方案。這不僅節省時間,而且使您的程式碼更加可靠和有效率。 這種方法使您能夠更多地關注專案的獨特方面。這是一種明智的策略,可以提高生產力並建立強大的軟體,而無需從頭開始。 ## 採用 HTML Emmet 進行快速原型設計: Emmet 是一個針對 Web 開發人員的工具包,可透過縮寫快速且有效率地進行編碼。 如果您使用 HTML,Emmet 可以顯著加快建立 HTML 結構的過程。 例子: ``` div>(header>ul>li*2>a)+footer>p ``` 輸出: ``` <div> <header> <ul> <li><a href=""></a></li> <li><a href=""></a></li> </ul> </header> <footer> <p></p> </footer> </div> ``` ## 利用人工智慧協助: - **GitHub 副駕駛:** 是 GitHub 與 OpenAI 合作開發的人工智慧驅動的程式碼補全工具。它透過在開發人員鍵入時產生智慧建議和自動完成來改變開發人員編寫程式碼的方式。這是迄今為止我嘗試過的最好的人工智慧工具之一。  - **標籤九:** 是一個人工智慧驅動的程式碼編輯器自動完成擴充。它超越了傳統的自動完成功能,使用機器學習模型來預測和建議整行或程式碼區塊。 用戶可以選擇免費使用 TabNine,但有一些限制,也可以透過訂閱來選擇專業版以獲得高級功能。 [TabNine](https://dev-to-uploads.s3.amazonaws.com/uploads/articles/68un8zingjmsvnuk5pyl.png) - **聊天gpt :** ChatGPT 可以真正改變您的工作效率。例如,它可以提供有用的範例,例如建議用於測試的陣列或幫助重建程式碼片段。  如果您在程式設計概念上遇到困難或需要澄清,ChatGPT 可以提供快速且易於理解的解釋。這就像擁有一位知識淵博的編碼夥伴,24/7 全天候幫助您應對編碼挑戰,使您的開發過程更加順暢和高效。 ## VS 程式碼中的擴充: VS Code 中的擴充功能可以透過加入功能、自動化任務和增強開發環境來顯著提高工作效率: - **更漂亮:** Prettier 是一個固執己見的程式碼格式化程序,它會自動格式化您的程式碼,使其看起來乾淨且一致,從而使您免於手動格式化的麻煩。有了 Prettier,您的程式碼變得更加賞心悅目,您可以更加專注於編寫邏輯,而不必擔心樣式。  - **自動重新命名標籤:** 自動重命名標籤擴充就像 HTML 或 XML 的編碼助手。當您變更開始標記的名稱時,此擴充功能會自動更新結束標記以符合。  - **更好的評論:** Better Comments 擴充功能將幫助您在程式碼中建立更人性化的註解。透過此擴展,您將能夠對註釋進行分類。  - **智慧感知:** IntelliSense 是您的程式設計助手,可在您鍵入時提供智慧程式碼補全和建議。它預測您的需求並提供相關選項,使編碼更加有效率。一些範例:    - **孔雀:** 當您處理大量專案並在 VSCode 視窗之間跳轉時,Peacock 非常有用。它允許您將顏色連結到每個專案,因此每當您打開它時,您都可以透過顏色快速查看您所在的視窗。  --- **總而言之**,結合這些策略和工具可以真正徹底改變您的編碼方法,將您轉變為更有效率、更有效率的開發人員。擁抱 10 倍思維不僅可以提高個人生產力,還可以為您的團隊做出積極貢獻。因此,繼續實施這些技巧,並觀察您的編碼之旅進入一個全新的水平。 --- 原文出處:https://dev.to/idboussadel/how-to-become-a-10x-dev-ake
歡迎來到 JavaScript 的奇妙世界,在這裡,程式設計與魔法相遇!如果您曾經感受到在網路上建立內容的快感,但想知道其背後隱藏的策略,那麼您來對地方了。✨🚀 在這篇部落格中,我們將穿越 JavaScript 領域,揭開複雜的神秘面紗,擁抱簡單。沒有令人困惑的術語——只有簡單的英語解釋和逐步說明。無論您是編碼新手還是經驗豐富的開發人員,請加入我們,我們會發現 10 個高級 JavaScript 技巧,助您一臂之力_“啊哈!”_ ## 1. DESTRUCTURING ASSIGNMENT 賦值解構是一種簡潔的擷取方式 來自陣列或物件的值並將它們分配給變數。 它簡化了您的程式碼並提高了可讀性。為了 陣列,可以使用括號表示法,並且可以使用 物件的大括號。  --- ## 2. SPREAD SYNTAX 您可以使用擴充語法來擴充元素 一個陣列或一個物件的屬性到另一個物件中 這對於製作副本、合併物件以及 將多個參數傳遞給函數。  --- ## 3. CURRYING 柯里化是一種函數式程式設計技術,其中 接受多個參數的函數被轉換 分成一系列函數,每個函數取一個參數 這允許更好地重複使用和組合 程式碼。  --- ## 4. MEMOIZATION 這是一種快取技術,用於儲存結果 昂貴的函數呼叫並避免不必要的 重新計算。 它會顯著降低長期性能 遞歸或消耗函數。  --- ## 5. PROMISES AND ASYNC/AWAIT Promise 和 Async/Await 對於處理至關重要 更優雅地非同步操作並使程式碼更優雅 更具可讀性和可維護性。 它們有助於避免地獄般的回調並改善錯誤處理。  --- ## 6. CLOSURES 閉包是記住環境的函數 他們被創造出來,即使那個環境沒有 更容易存取。 它們對於建立私有變數和 行為封裝。  --- ## 7. FUNCTION COMPOSITION 函陣列合是將兩個或兩個函陣列合起來的過程 更多功能建立新功能。 它鼓勵程式碼重複使用並幫助建立 轉變一步一步複雜。  --- ## 8. PROXY 代理物件允許您建立自訂行為 用於基本的物件操作。它允許你攔截 並修改物件操作。 '物件,例如 存取屬性、分配和呼叫方法。  --- ## 9. EVENT DELEGATION 事件委託是一種附加事件委託的技術 父級的單一事件偵聽器而不是多個 每個孩子的聽眾。記憶體使用情況並改善 效能,特別是對於大型列表或動態列表 產生的內容。  --- ## 10. WEB WORKERS Web Workers 允許您在以下位置執行 JavaScript 程式碼 背景,與主線程一起。 它們對於卸載 CPU 密集型任務很有用, 避免 UI 掛起並提高效能回應能力。  --- ## 結論 好了,各位研究人員!😊 我們一起穿越了 JavaScript 星系,揭示了 10 種乍看之下很神奇的技術。但現在,有了一點理解和熱情,您就可以自信地應用這些編碼咒語了。 如果您喜歡這個神奇的旅程,請不要忘記點擊_關注按鈕_以了解更多編碼冒險。當然,您的評論是讓這個社區蓬勃發展的秘密武器。請在下面分享您的想法、問題或您自己的 JavaScript 技巧。讓我們繼續對話吧! 感謝您加入這次冒險。下次見,祝您編碼愉快! 🚀💻✨ --- 原文出處:https://dev.to/big_smoke/10-advanced-javascript-tricks-you-should-know--1ofj
## 什麼是自架軟體? 自託管專案是指從使用者的伺服器或基礎架構安裝、管理和操作的軟體、應用程式或服務,而不是託管在外部或第三方伺服器(例如雲端服務供應商提供的伺服器)上。 這種模型可以更好地控制軟體和資料,並且通常在隱私、安全、客製化和成本效益方面受到青睞。 ### 自託管軟體對於新創公司的重要性🚀 - **資料控制和隱私🛡️**:完全控制您的資料。自託管意味著您新創公司的敏感資訊保留在內部,確保一流的隱私和安全。 - **客製化與靈活性 🔧**:客製化軟體以滿足您新創公司的獨特需求。與雲端託管服務不同,自架軟體允許進行廣泛的客製化。 - **成本效益💰**:從長遠來看更經濟實惠。自託管可以減少經常性的雲端服務費用,使其成為注重費用的新創公司的明智選擇。 - **可靠性和獨立性🌐**:不要受服務提供者的正常運作時間和政策的擺佈。自託管解決方案可確保一致的存取,這對於您的新創公司的順利運作至關重要。 - **合規性和安全性🔒**:輕鬆滿足特定的監管要求。透過管理您的伺服器,實施完全符合您新創公司需求的安全性和合規性措施。 ## 這些是您需要從 GitHub 取得的一些基本的自架開源儲存庫 👇 讓我們探索這些開源軟體,並了解它們如何徹底改變您的自架軟體解決方案方法。 ### [Swirl](https://github.com/swirlai/swirl-search):跨多個資料來源的人工智慧增強搜尋 [](https://github.com/swirlai/swirl-search) [**Swirl**](https://github.com/swirlai/swirl-search) 是一款創新的開源軟體,利用人工智慧搜尋各種內容和資料來源,使用讀者法學碩士智慧找到最佳結果。然後,它利用生成式人工智慧提供客製化答案,整合用戶特定的資料以獲得更相關的結果。 **它解決了什麼問題,以及它如何提供優秀的開源解決方案?** - 🌐 **多重來源搜尋**:Swirl 熟練地跨資料庫、公共資料服務和企業來源進行搜尋,提供全面的搜尋解決方案。 - 🤖 **人工智慧驅動的見解**:利用人工智慧和 ChatGPT(及更多)等大型語言模型來分析和排名搜尋結果,確保高相關性和準確性。 - 🔄 **輕鬆整合**:設定和使用簡單;從 Docker 下載開始,然後根據需要擴展以合併更多來源。 **GitHub 儲存庫連結:** [GitHub 上的 Swirl](https://github.com/swirlai/swirl-search) --- ### Clickvote:將社交反應無縫整合到您的內容中  Clickvote 是一款開源工具,可輕鬆為任何線上內容加入點讚、按讚和評論,從而增強用戶在各種環境中的互動和參與。 **它解決的問題及其開源優勢:** - 🔄 **即時互動**:提供按讚、按讚和評論的即時更新,增強用戶參與度。 - 🔍 **深度分析**:透過詳細分析提供對使用者行為的洞察,幫助了解受眾偏好。 - 🚀 **可擴展性**:每秒處理無限次點擊,即使在大流量下也能確保穩健的效能。 **GitHub 儲存庫連結:** [GitHub 上的 Clickvote](https://github.com/clickvote/clickvote) --- ### Wasp:使用 React 和 Node.js 徹底改變全端 Web 開發  Wasp 是一個尖端的開源框架,旨在簡化使用 React 和 Node.js 的全端 Web 應用程式的開發,只需一個 CLI 命令即可快速部署。 **它解決的問題及其開源優勢:** - 🚀 **快速開發**:只需幾行程式碼即可快速啟動,從而可以輕鬆建立和部署生產就緒的 Web 應用程式。 - 🛠️ **更少的樣板**:抽象複雜的全端功能,減少樣板並使維護和升級變得簡單 - 🔓 **無鎖定**:確保部署的靈活性,沒有特定的提供者鎖定和完整的程式碼控制。 **GitHub 儲存庫連結:** [GitHub 上的 Wasp](https://github.com/wasp-lang/wasp) --- ### Pezzo:利用雲端原生開源平台簡化 LLMOps  Pezzo 是一個革命性的開源、開發人員優先的 LLMOps 平台,完全雲端原生,旨在增強 AI 操作的提示設計、版本管理、即時交付、協作、故障排除和可觀察性。 **它解決的問題及其開源優勢:** - 🤖 **AI 營運效率**:促進 AI 營運的無縫監控和故障排除。 - 💡 **降低成本和延遲**:輔助工具可將成本和延遲降低高達 90%,從而優化營運效率。 - 🌐 **統一提示管理**:提供單一平台來管理提示,確保簡化協作和即時 AI 變更交付。 **GitHub 儲存庫連結:** [GitHub 上的片段](https://github.com/pezzolabs/pezzo) --- ### Flagsmith:開源功能標記和遠端設定服務  Flagsmith 是一個開源平台,提供功能標記和遠端設定服務,允許靈活的本地託管選項或透過其託管版本。 **它解決的問題及其開源優勢:** - 🚀 **功能管理**:簡化跨 Web、行動和伺服器端應用程式的功能標記的建立和管理。 - 🔧 **可自訂部署**:可部署在私有雲或在本地執行,提供託管選項的多功能性。 - 🎛️ **使用者和環境特定控制**:允許針對不同的使用者群體或環境開啟或關閉功能,增強使用者體驗和測試靈活性。 **GitHub 儲存庫連結:** [GitHub 上的 Flagsmith](https://github.com/Flagsmith/flagsmith) --- ## Digger:用於 CI 管道的開源 IaC 編排工具  Digger 是一款用於基礎設施即程式碼 (IaC) 編排的創新開源工具,可與現有 CI 管道無縫集成,以提高部署 Terraform 配置的效率和安全性。 **它解決的問題及其開源優勢:** - 🛠️ **CI/CD 整合**:將 Terraform 直接整合到現有的 CI/CD 管道中,避免需要單獨的專用 CI 系統。 - 🔐 **增強的安全性**:確保安全操作,因為雲端存取機密不與第三方服務共用。 - 💡 **經濟有效且高效**:無需額外的運算資源,可在現有 CI 基礎設施中本機執行 Terraform。 - 🎚️ **高級功能**:提供諸如拉取請求評論中的 Terraform 計劃和應用程式、私有執行器、對 RBAC 的 OPA 支援、PR 級鎖和漂移檢測等功能。 **GitHub 儲存庫連結:** [GitHub 上的 Digger](https://github.com/diggerhq/digger) --- ## Keep:開源警報管理和自動化平台  Keep 是一個開源平台,旨在集中和自動化警報管理。它允許用戶將所有警報整合到一個介面中,並有效地自動化端到端流程。 **它解決的問題及其開源優勢:** - 🚨 **集中警報管理**:將所有警報整合到一處,簡化監控和回應流程。 - ⚙️ **工作流程自動化**:支援工作流程編排以自動化端到端流程,類似於 Datadog 工作流程自動化功能。 - 🔄 **廣泛的工具相容性**:支援多種可觀測工具、資料庫、通訊平台、事件管理工俱全面整合。 **GitHub 儲存庫連結:** [保留在 GitHub 上](https://github.com/keephq/keep) --- ## MeetFAQ:將您的支援管道轉變為人工智慧支援的公共常見問題解答  MeetFAQ 是一款創新的開源工具,可連接到您的支援管道(例如Discord),並採用人工智慧(特別是ChatGPT)將對話轉換為全面的公共常見問題解答,可透過URL 或直接在您的網站上存取。 **它解決的問題及其開源優勢:** - 🤖 **人工智慧驅動的常見問題解答產生**:使用 ChatGPT 將支援頻道對話轉換為常見問題解答,以實現更廣泛的可存取性。 - 🌍 **公共可存取性**:向更廣泛的受眾(而不僅僅是支援管道上的受眾)提供常見問題解答,從而增強客戶聯繫。 - 💡 **客戶保留**:透過提供易於存取的公共常見問題解答來幫助防止客戶流失,確保不會遺漏任何客戶問題。 **GitHub 儲存庫連結:** [GitHub 上的 MeetFAQ](https://github.com/github-20k/meetqa) --- ### Jackson:Web 應用程式的進階 SSO 和目錄同步  Jackson 是一項開源單一登入 (SSO) 服務,可簡化 Web 應用程式驗證,支援 SAML 和 OpenID Connect 協定。它超越了 SSO,透過 SCIM 2.0 協定提供目錄同步,支援自動用戶和群組配置/取消配置。 **它解決的問題及其開源優勢:** - 🔒 **增強的身份驗證**:提供企業級 SSO 支持,簡化跨 Web 應用程式的身份驗證。 - 🔄 **目錄同步**:支援透過 SCIM 2.0 進行目錄同步,以實現高效的使用者和群組管理。 - 🌐 **協定支援**:促進 SAML 和 OpenID Connect 的集成,抽象化這些協定的複雜性以便於實施。 **GitHub 儲存庫連結:** [GitHub 上的傑克遜](https://github.com/boxyhq/jackson) --- ### 綜上所述 我們探索了九個出色的開源儲存庫。他們要不是一家新創公司,就是一個由獨立駭客變大的專案。 這些工具展示了自架的力量以及小型團隊和個人創作者蓬勃發展的創新。 感謝您與我一起經歷這些獨特專案的富有洞察力的旅程。一如既往,偉大即將到來!  --- 原文出處:https://dev.to/srbhr/discover-the-9-best-self-hosted-open-source-repositories-on-github-23oc
_「現在是2021 年了,我的飛行汽車在哪裡?」_ - Joel Spolsky(Stack Overflow 和Trello 的建立者)用這句話來表達他對Web 開發仍然與20 年前幾乎相同的感覺的幻滅。 但今天,有了 GPT,我們就可以再問這個問題了。我們看到了所有這些花哨的推文和演示,但是**當我需要啟動一個新的全端 Web 應用程式時**,這對我作為開發人員意味著什麼?我真的必須經歷“npm create vite my-new-app”,並再次從空白頁面開始嗎? 最後的答案是「否」——你可以使用很多很酷的東西來讓你的生活更輕鬆。它可能還不是超音速德羅寧,但它至少肯定是在地面上盤旋。 讓我們探討一下今天的 AI 場景為我們提供了什麼,以便更輕鬆地啟動和建立全端 Web 應用程式: ## 🐝 🤖 MAGE - 一分鐘內從單一提示到全端、React 和 Node.js 應用程式(免費使用!)  [MAGE](https://usemage.ai/) (*Magic App GEnerator*) 可能是最容易使用的 AI 編碼代理 - 一切都透過 Web 介面進行,**您所要做的就是輸入您要建立的應用程式的簡短描述**。這樣,MAGE 將在由 [Wasp](https://wasp-lang.dev/) 提供支援的 React、Tailwind、Node.js 和 Prisma 中產生完整的全端程式碼庫,您可以免費下載。 MAGE 最好的部分是**它是完全開源且完全免費使用** - 您所需要做的就是[使用您的 GitHub 登入](https://usemage.ai/),然後您就可以開始建立應用程式! MAGE [於7 月在Product Hunt 上推出](https://www.producthunt.com/products/wasp-lang-alpha#gpt-webapp-generator-for-react-node-js),從那時起就被用來建立近 30,000 個應用程式。 ## 📟 Aider - 終端機中的 AI 配對程式設計師  在您使用 MAGE 建立應用程式的 v1 版並獲得基本功能後,您可能會想要加入更多功能。為什麼不使用人工智慧來實現這一點呢?這就是 Aider 發揮作用的地方! Aider 的超能力在於您可以將其插入任何現有專案並開始使用!這感覺就像與坐在您旁邊的開發人員同事聊天 - 只需描述您的下一個功能,Aider 將盡力實現它,同時提供流程的所有詳細訊息,並自動向您的存儲庫加入新的提交!多麼酷啊? 您可以了解更多有關 Aider 的資訊並在這裡嘗試一下:https://github.com/paul-gauthier/aider ## 🦀 🚀 Shuttle AI - 使用 GPT 在 Rust 中建立後端!  當您聽到“網頁應用程式”這個詞時,我們大多數人都會立即想到 JavaScript。雖然對於前端來說這在很大程度上是正確的,但我們可以用我們喜歡的任何技術來建立後端! 除了 Python、Java 和 PHP 等常見的嫌疑犯之外,Rust 又如何呢?它是開發人員最喜愛的語言之一,它不應該只用於低階演算法。 Shuttle AI 讓這一切成為可能 - 他們強大的基於 Rust 的框架已經使建置和部署後端變得容易,而頂部的 AI 使其變得輕而易舉! 在這裡了解更多:https://www.shuttle.rs/ai ## ⚡️📦 Supabase AI - 再見,複雜的 SQL 查詢  [Supabase](https://supabase.com/) 是為您的全端應用程式啟動和執行資料庫的最佳方法之一,除此之外您還可以獲得大量功能!由於它專門用於 Postgresql,這意味著您偶爾需要編寫一些 SQL。為什麼不從人工智慧得到一些幫助呢? Supabase 因其美觀且用戶友好的儀表板(帶有整合 SQL 編輯器)而聞名,現在他們透過加入自己的 AI 代理使其變得更好。要求它建立新的表和索引,甚至編寫資料庫函數! 在這裡了解更多:https://supabase.com/blog/supabase-studio-3-0 ## 👁️ 🧑✈️Visual Copilot - 將 Figma 設計編碼  如果您曾經從設計師那裡獲得 Figma 設計講義,然後您的任務是用它來實現 UI,您是否想過是否有一種方法可以自動化此操作?這就是 Visual Copilot 所追求的! 只需點擊一下,並給出 Figma 設計,Visual Copilot 就會為其產生前端程式碼!它將盡最大努力使其具有響應性並保持程式碼整潔和可重複使用。 它目前可作為 [Figma 社群插件](https://www.figma.com/community/plugin/747985167520967365/builder-io-ai-powered-figma-to-code-react-vue-tailwind-more) 。 ## ✈️ 🤖 GPT Pilot - 使用協作 AI 啟動新應用程式  GPT Pilot 是專門用於從頭開始建立新應用程式的編碼代理程式。它獨特的做法是它與開發者合作——每當遇到困難時,它都會尋求你的幫助! 在內部,它由多個代理組成,這些代理一起協作並經歷應用程式開發的不同階段 - 從產品所有者和架構師到 DevOps 和開發人員!  這是另一個完全開源的解決方案,最近受到了開發人員的喜愛,並多次出現在 GitHub 趨勢排行榜上。 了解更多並在這裡嘗試一下:https://github.com/Pythagora-io/gpt-pilot ## 概括  這就是一個包裝!還有更多的人工智慧工具,而且每天都有新的工具出現,但在本概述中,我們試圖專注於您今天可以用來啟動新的網路應用程式的工具。 希望您發現這很有幫助,並學到了一些可能派上用場的新東西!我也很想在評論中聽到您的意見 - 您最喜歡的 Web 開發人工智慧工具是什麼,無論是您每天使用的工具還是只是感到興奮的工具,接下來我們應該介紹什麼? --- 原文出處:https://dev.to/matijasos/6-tools-to-kickstart-your-full-stack-app-with-ai-4oh3
# 簡介 ChatGPT 訓練至 2022 年。 但是,如果您希望它專門為您提供有關您網站的資訊怎麼辦?最有可能的是,這是不可能的,**但不再是了!** OpenAI 推出了他們的新功能 - [助手](https://platform.openai.com/docs/assistants/how-it-works)。 現在您可以輕鬆地為您的網站建立索引,然後向 ChatGPT 詢問有關該網站的問題。在本教程中,我們將建立一個系統來索引您的網站並讓您查詢它。我們將: - 抓取文件網站地圖。 - 從網站上的所有頁面中提取資訊。 - 使用新資訊建立新助理。 - 建立一個簡單的ChatGPT前端介面並查詢助手。  --- ## 你的後台工作平台🔌 [Trigger.dev](https://trigger.dev/) 是一個開源程式庫,可讓您使用 NextJS、Remix、Astro 等為您的應用程式建立和監控長時間執行的作業! [](https://github.com/triggerdotdev/trigger.dev) 請幫我們一顆星🥹。 這將幫助我們建立更多這樣的文章💖 --- ## 讓我們開始吧🔥 讓我們建立一個新的 NextJS 專案。 ``` npx create-next-app@latest ``` >💡 我們使用 NextJS 新的應用程式路由器。安裝專案之前請確保您的節點版本為 18+ 讓我們建立一個新的資料庫來保存助手和抓取的頁面。 對於我們的範例,我們將使用 [Prisma](https://www.prisma.io/) 和 SQLite。 安裝非常簡單,只需執行: ``` npm install prisma @prisma/client --save ``` 然後加入架構和資料庫 ``` npx prisma init --datasource-provider sqlite ``` 轉到“prisma/schema.prisma”並將其替換為以下架構: ``` // This is your Prisma schema file, // learn more about it in the docs: https://pris.ly/d/prisma-schema generator client { provider = "prisma-client-js" } datasource db { provider = "sqlite" url = env("DATABASE_URL") } model Docs { id Int @id @default(autoincrement()) content String url String @unique identifier String @@index([identifier]) } model Assistant { id Int @id @default(autoincrement()) aId String url String @unique } ``` 然後執行 ``` npx prisma db push ``` 這將建立一個新的 SQLite 資料庫(本機檔案),其中包含兩個主表:“Docs”和“Assistant” - 「Docs」包含所有抓取的頁面 - `Assistant` 包含文件的 URL 和內部 ChatGPT 助理 ID。 讓我們新增 Prisma 客戶端。 建立一個名為「helper」的新資料夾,並新增一個名為「prisma.ts」的新文件,並在其中新增以下程式碼: ``` import {PrismaClient} from '@prisma/client'; export const prisma = new PrismaClient(); ``` 我們稍後可以使用“prisma”變數來查詢我們的資料庫。 ---  ## 刮擦和索引 ### 建立 Trigger.dev 帳戶 抓取頁面並為其建立索引是一項長期執行的任務。 **我們需要:** - 抓取網站地圖的主網站元 URL。 - 擷取網站地圖內的所有頁面。 - 前往每個頁面並提取內容。 - 將所有內容儲存到 ChatGPT 助手中。 為此,我們使用 Trigger.dev! 註冊 [Trigger.dev 帳號](https://trigger.dev/)。 註冊後,建立一個組織並為您的工作選擇一個專案名稱。  選擇 Next.js 作為您的框架,並按照將 Trigger.dev 新增至現有 Next.js 專案的流程進行操作。  否則,請點選專案儀表板側邊欄選單上的「環境和 API 金鑰」。  複製您的 DEV 伺服器 API 金鑰並執行下面的程式碼片段來安裝 Trigger.dev。 仔細按照說明進行操作。 ``` npx @trigger.dev/cli@latest init ``` 在另一個終端中執行以下程式碼片段,在 Trigger.dev 和您的 Next.js 專案之間建立隧道。 ``` npx @trigger.dev/cli@latest dev ``` ### 安裝 ChatGPT (OpenAI) 我們將使用OpenAI助手,因此我們必須將其安裝到我們的專案中。 [建立新的 OpenAI 帳戶](https://platform.openai.com/) 並產生 API 金鑰。  點擊下拉清單中的「檢視 API 金鑰」以建立 API 金鑰。  接下來,透過執行下面的程式碼片段來安裝 OpenAI 套件。 ``` npm install @trigger.dev/openai ``` 將您的 OpenAI API 金鑰新增至「.env.local」檔案。 ``` OPENAI_API_KEY=<your_api_key> ``` 建立一個新目錄“helper”並新增一個新檔案“open.ai.tsx”,其中包含以下內容: ``` import {OpenAI} from "@trigger.dev/openai"; export const openai = new OpenAI({ id: "openai", apiKey: process.env.OPENAI_API_KEY!, }); ``` 這是我們透過 Trigger.dev 整合封裝的 OpenAI 用戶端。 ### 建立後台作業 讓我們繼續建立一個新的後台作業! 前往“jobs”並建立一個名為“process.documentation.ts”的新檔案。 **新增以下程式碼:** ``` import { eventTrigger } from "@trigger.dev/sdk"; import { client } from "@openai-assistant/trigger"; import {object, string} from "zod"; import {JSDOM} from "jsdom"; import {openai} from "@openai-assistant/helper/open.ai"; client.defineJob({ // This is the unique identifier for your Job; it must be unique across all Jobs in your project. id: "process-documentation", name: "Process Documentation", version: "0.0.1", // This is triggered by an event using eventTrigger. You can also trigger Jobs with webhooks, on schedules, and more: https://trigger.dev/docs/documentation/concepts/triggers/introduction trigger: eventTrigger({ name: "process.documentation.event", schema: object({ url: string(), }) }), integrations: { openai }, run: async (payload, io, ctx) => { } }); ``` 我們定義了一個名為「process.documentation.event」的新作業,並新增了一個名為 URL 的必要參數 - 這是我們稍後要傳送的文件 URL。 正如您所看到的,該作業是空的,所以讓我們向其中加入第一個任務。 我們需要獲取網站網站地圖並將其返回。 抓取網站將返回我們需要解析的 HTML。 為此,我們需要安裝 JSDOM。 ``` npm install jsdom --save ``` 並將其導入到我們文件的頂部: ``` import {JSDOM} from "jsdom"; ``` 現在,我們可以新增第一個任務。 用「runTask」包裝我們的程式碼很重要,這可以讓 Trigger.dev 將其與其他任務分開。觸發特殊架構將任務拆分為不同的進程,因此 Vercel 無伺服器逾時不會影響它們。 **這是第一個任務的程式碼:** ``` const getSiteMap = await io.runTask("grab-sitemap", async () => { const data = await (await fetch(payload.url)).text(); const dom = new JSDOM(data); const sitemap = dom.window.document.querySelector('[rel="sitemap"]')?.getAttribute('href'); return new URL(sitemap!, payload.url).toString(); }); ``` - 我們透過 HTTP 請求從 URL 取得整個 HTML。 - 我們將其轉換為 JS 物件。 - 我們找到網站地圖 URL。 - 我們解析它並返回它。 接下來,我們需要抓取網站地圖,提取所有 URL 並返回它們。 讓我們安裝“Lodash”——陣列結構的特殊函數。 ``` npm install lodash @types/lodash --save ``` 這是任務的程式碼: ``` export const makeId = (length: number) => { let text = ''; const possible = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'; for (let i = 0; i < length; i += 1) { text += possible.charAt(Math.floor(Math.random() * possible.length)); } return text; }; const {identifier, list} = await io.runTask("load-and-parse-sitemap", async () => { const urls = /(http|ftp|https):\/\/([\w_-]+(?:(?:\.[\w_-]+)+))([\w.,@?^=%&:\/~+#-]*[\w@?^=%&\/~+#-])/g; const identifier = makeId(5); const data = await (await fetch(getSiteMap)).text(); // @ts-ignore return {identifier, list: chunk(([...new Set(data.match(urls))] as string[]).filter(f => f.includes(payload.url)).map(p => ({identifier, url: p})), 25)}; }); ``` - 我們建立一個名為 makeId 的新函數來為所有頁面產生隨機辨識碼。 - 我們建立一個新任務並加入正規表示式來提取每個可能的 URL - 我們發送一個 HTTP 請求來載入網站地圖並提取其所有 URL。 - 我們將 URL「分塊」為 25 個元素的陣列(如果有 100 個元素,則會有四個 25 個元素的陣列) 接下來,讓我們建立一個新作業來處理每個 URL。 **這是完整的程式碼:** ``` function getElementsBetween(startElement: Element, endElement: Element) { let currentElement = startElement; const elements = []; // Traverse the DOM until the endElement is reached while (currentElement && currentElement !== endElement) { currentElement = currentElement.nextElementSibling!; // If there's no next sibling, go up a level and continue if (!currentElement) { // @ts-ignore currentElement = startElement.parentNode!; startElement = currentElement; if (currentElement === endElement) break; continue; } // Add the current element to the list if (currentElement && currentElement !== endElement) { elements.push(currentElement); } } return elements; } const processContent = client.defineJob({ // This is the unique identifier for your Job; it must be unique across all Jobs in your project. id: "process-content", name: "Process Content", version: "0.0.1", // This is triggered by an event using eventTrigger. You can also trigger Jobs with webhooks, on schedules, and more: https://trigger.dev/docs/documentation/concepts/triggers/introduction trigger: eventTrigger({ name: "process.content.event", schema: object({ url: string(), identifier: string(), }) }), run: async (payload, io, ctx) => { return io.runTask('grab-content', async () => { // We first grab a raw html of the content from the website const data = await (await fetch(payload.url)).text(); // We load it with JSDOM so we can manipulate it const dom = new JSDOM(data); // We remove all the scripts and styles from the page dom.window.document.querySelectorAll('script, style').forEach((el) => el.remove()); // We grab all the titles from the page const content = Array.from(dom.window.document.querySelectorAll('h1, h2, h3, h4, h5, h6')); // We grab the last element so we can get the content between the last element and the next element const lastElement = content[content.length - 1]?.parentElement?.nextElementSibling!; const elements = []; // We loop through all the elements and grab the content between each title for (let i = 0; i < content.length; i++) { const element = content[i]; const nextElement = content?.[i + 1] || lastElement; const elementsBetween = getElementsBetween(element, nextElement); elements.push({ title: element.textContent, content: elementsBetween.map((el) => el.textContent).join('\n') }); } // We create a raw text format of all the content const page = ` ---------------------------------- url: ${payload.url}\n ${elements.map((el) => `${el.title}\n${el.content}`).join('\n')} ---------------------------------- `; // We save it to our database await prisma.docs.upsert({ where: { url: payload.url }, update: { content: page, identifier: payload.identifier }, create: { url: payload.url, content: page, identifier: payload.identifier } }); }); }, }); ``` - 我們從 URL 中獲取內容(之前從網站地圖中提取) - 我們用`JSDOM`解析它 - 我們刪除頁面上存在的所有可能的“<script>”或“<style>”。 - 我們抓取頁面上的所有標題(`h1`、`h2`、`h3`、`h4`、`h5`、`h6`) - 我們迭代標題並獲取它們之間的內容。我們不想取得整個頁面內容,因為它可能包含不相關的內容。 - 我們建立頁面原始文字的版本並將其保存到我們的資料庫中。 現在,讓我們為每個網站地圖 URL 執行此任務。 觸發器引入了名為“batchInvokeAndWaitForCompletion”的東西。 它允許我們批量發送 25 個專案進行處理,並且它將同時處理所有這些專案。下面是接下來的幾行程式碼: ``` let i = 0; for (const item of list) { await processContent.batchInvokeAndWaitForCompletion( 'process-list-' + i, item.map( payload => ({ payload, }), 86_400), ); i++; } ``` 我們以 25 個為一組[手動觸發](https://trigger.dev/docs/documentation/concepts/triggers/invoke)之前建立的作業。 完成後,讓我們將保存到資料庫的所有內容並連接它: ``` const data = await io.runTask("get-extracted-data", async () => { return (await prisma.docs.findMany({ where: { identifier }, select: { content: true } })).map((d) => d.content).join('\n\n'); }); ``` 我們使用之前指定的標識符。 現在,讓我們在 ChatGPT 中使用新資料建立一個新檔案: ``` const file = await io.openai.files.createAndWaitForProcessing("upload-file", { purpose: "assistants", file: data }); ``` `createAndWaitForProcessing` 是 Trigger.dev 建立的任務,用於將檔案上傳到助手。如果您在沒有整合的情況下手動使用“openai”,則必須串流傳輸檔案。 現在讓我們建立或更新我們的助手: ``` const assistant = await io.openai.runTask("create-or-update-assistant", async (openai) => { const currentAssistant = await prisma.assistant.findFirst({ where: { url: payload.url } }); if (currentAssistant) { return openai.beta.assistants.update(currentAssistant.aId, { file_ids: [file.id] }); } return openai.beta.assistants.create({ name: identifier, description: 'Documentation', instructions: 'You are a documentation assistant, you have been loaded with documentation from ' + payload.url + ', return everything in an MD format.', model: 'gpt-4-1106-preview', tools: [{ type: "code_interpreter" }, {type: 'retrieval'}], file_ids: [file.id], }); }); ``` - 我們首先檢查是否有針對該特定 URL 的助手。 - 如果我們有的話,讓我們用新文件更新助手。 - 如果沒有,讓我們建立一個新的助手。 - 我們傳遞「你是文件助理」的指令,需要注意的是,我們希望最終輸出為「MD」格式,以便稍後更好地顯示。 對於拼圖的最後一塊,讓我們將新助手儲存到我們的資料庫中。 **這是程式碼:** ``` await io.runTask("save-assistant", async () => { await prisma.assistant.upsert({ where: { url: payload.url }, update: { aId: assistant.id, }, create: { aId: assistant.id, url: payload.url, } }); }); ``` 如果該 URL 已經存在,我們可以嘗試使用新的助手 ID 來更新它。 這是該頁面的完整程式碼: ``` import { eventTrigger } from "@trigger.dev/sdk"; import { client } from "@openai-assistant/trigger"; import {object, string} from "zod"; import {JSDOM} from "jsdom"; import {chunk} from "lodash"; import {prisma} from "@openai-assistant/helper/prisma.client"; import {openai} from "@openai-assistant/helper/open.ai"; const makeId = (length: number) => { let text = ''; const possible = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'; for (let i = 0; i < length; i += 1) { text += possible.charAt(Math.floor(Math.random() * possible.length)); } return text; }; client.defineJob({ // This is the unique identifier for your Job; it must be unique across all Jobs in your project. id: "process-documentation", name: "Process Documentation", version: "0.0.1", // This is triggered by an event using eventTrigger. You can also trigger Jobs with webhooks, on schedules, and more: https://trigger.dev/docs/documentation/concepts/triggers/introduction trigger: eventTrigger({ name: "process.documentation.event", schema: object({ url: string(), }) }), integrations: { openai }, run: async (payload, io, ctx) => { // The first task to get the sitemap URL from the website const getSiteMap = await io.runTask("grab-sitemap", async () => { const data = await (await fetch(payload.url)).text(); const dom = new JSDOM(data); const sitemap = dom.window.document.querySelector('[rel="sitemap"]')?.getAttribute('href'); return new URL(sitemap!, payload.url).toString(); }); // We parse the sitemap; instead of using some XML parser, we just use regex to get the URLs and we return it in chunks of 25 const {identifier, list} = await io.runTask("load-and-parse-sitemap", async () => { const urls = /(http|ftp|https):\/\/([\w_-]+(?:(?:\.[\w_-]+)+))([\w.,@?^=%&:\/~+#-]*[\w@?^=%&\/~+#-])/g; const identifier = makeId(5); const data = await (await fetch(getSiteMap)).text(); // @ts-ignore return {identifier, list: chunk(([...new Set(data.match(urls))] as string[]).filter(f => f.includes(payload.url)).map(p => ({identifier, url: p})), 25)}; }); // We go into each page and grab the content; we do this in batches of 25 and save it to the DB let i = 0; for (const item of list) { await processContent.batchInvokeAndWaitForCompletion( 'process-list-' + i, item.map( payload => ({ payload, }), 86_400), ); i++; } // We get the data that we saved in batches from the DB const data = await io.runTask("get-extracted-data", async () => { return (await prisma.docs.findMany({ where: { identifier }, select: { content: true } })).map((d) => d.content).join('\n\n'); }); // We upload the data to OpenAI with all the content const file = await io.openai.files.createAndWaitForProcessing("upload-file", { purpose: "assistants", file: data }); // We create a new assistant or update the old one with the new file const assistant = await io.openai.runTask("create-or-update-assistant", async (openai) => { const currentAssistant = await prisma.assistant.findFirst({ where: { url: payload.url } }); if (currentAssistant) { return openai.beta.assistants.update(currentAssistant.aId, { file_ids: [file.id] }); } return openai.beta.assistants.create({ name: identifier, description: 'Documentation', instructions: 'You are a documentation assistant, you have been loaded with documentation from ' + payload.url + ', return everything in an MD format.', model: 'gpt-4-1106-preview', tools: [{ type: "code_interpreter" }, {type: 'retrieval'}], file_ids: [file.id], }); }); // We update our internal database with the assistant await io.runTask("save-assistant", async () => { await prisma.assistant.upsert({ where: { url: payload.url }, update: { aId: assistant.id, }, create: { aId: assistant.id, url: payload.url, } }); }); }, }); export function getElementsBetween(startElement: Element, endElement: Element) { let currentElement = startElement; const elements = []; // Traverse the DOM until the endElement is reached while (currentElement && currentElement !== endElement) { currentElement = currentElement.nextElementSibling!; // If there's no next sibling, go up a level and continue if (!currentElement) { // @ts-ignore currentElement = startElement.parentNode!; startElement = currentElement; if (currentElement === endElement) break; continue; } // Add the current element to the list if (currentElement && currentElement !== endElement) { elements.push(currentElement); } } return elements; } // This job will grab the content from the website const processContent = client.defineJob({ // This is the unique identifier for your Job; it must be unique across all Jobs in your project. id: "process-content", name: "Process Content", version: "0.0.1", // This is triggered by an event using eventTrigger. You can also trigger Jobs with webhooks, on schedules, and more: https://trigger.dev/docs/documentation/concepts/triggers/introduction trigger: eventTrigger({ name: "process.content.event", schema: object({ url: string(), identifier: string(), }) }), run: async (payload, io, ctx) => { return io.runTask('grab-content', async () => { try { // We first grab a raw HTML of the content from the website const data = await (await fetch(payload.url)).text(); // We load it with JSDOM so we can manipulate it const dom = new JSDOM(data); // We remove all the scripts and styles from the page dom.window.document.querySelectorAll('script, style').forEach((el) => el.remove()); // We grab all the titles from the page const content = Array.from(dom.window.document.querySelectorAll('h1, h2, h3, h4, h5, h6')); // We grab the last element so we can get the content between the last element and the next element const lastElement = content[content.length - 1]?.parentElement?.nextElementSibling!; const elements = []; // We loop through all the elements and grab the content between each title for (let i = 0; i < content.length; i++) { const element = content[i]; const nextElement = content?.[i + 1] || lastElement; const elementsBetween = getElementsBetween(element, nextElement); elements.push({ title: element.textContent, content: elementsBetween.map((el) => el.textContent).join('\n') }); } // We create a raw text format of all the content const page = ` ---------------------------------- url: ${payload.url}\n ${elements.map((el) => `${el.title}\n${el.content}`).join('\n')} ---------------------------------- `; // We save it to our database await prisma.docs.upsert({ where: { url: payload.url }, update: { content: page, identifier: payload.identifier }, create: { url: payload.url, content: page, identifier: payload.identifier } }); } catch (e) { console.log(e); } }); }, }); ``` 我們已經完成建立後台作業來抓取和索引文件🎉 ### 詢問助理 現在,讓我們建立一個任務來詢問我們的助手。 前往“jobs”並建立一個新檔案“question.assistant.ts”。 **新增以下程式碼:** ``` import {eventTrigger} from "@trigger.dev/sdk"; import {client} from "@openai-assistant/trigger"; import {object, string} from "zod"; import {openai} from "@openai-assistant/helper/open.ai"; client.defineJob({ // This is the unique identifier for your Job; it must be unique across all Jobs in your project. id: "question-assistant", name: "Question Assistant", version: "0.0.1", // This is triggered by an event using eventTrigger. You can also trigger Jobs with webhooks, on schedules, and more: https://trigger.dev/docs/documentation/concepts/triggers/introduction trigger: eventTrigger({ name: "question.assistant.event", schema: object({ content: string(), aId: string(), threadId: string().optional(), }) }), integrations: { openai }, run: async (payload, io, ctx) => { // Create or use an existing thread const thread = payload.threadId ? await io.openai.beta.threads.retrieve('get-thread', payload.threadId) : await io.openai.beta.threads.create('create-thread'); // Create a message in the thread await io.openai.beta.threads.messages.create('create-message', thread.id, { content: payload.content, role: 'user', }); // Run the thread const run = await io.openai.beta.threads.runs.createAndWaitForCompletion('run-thread', thread.id, { model: 'gpt-4-1106-preview', assistant_id: payload.aId, }); // Check the status of the thread if (run.status !== "completed") { console.log('not completed'); throw new Error(`Run finished with status ${run.status}: ${JSON.stringify(run.last_error)}`); } // Get the messages from the thread const messages = await io.openai.beta.threads.messages.list("list-messages", run.thread_id, { query: { limit: "1" } }); const content = messages[0].content[0]; if (content.type === 'text') { return {content: content.text.value, threadId: thread.id}; } } }); ``` - 該事件需要三個參數 - `content` - 我們想要傳送給助理的訊息。 - `aId` - 我們先前建立的助手的內部 ID。 - `threadId` - 對話的執行緒 ID。正如您所看到的,這是一個可選參數,因為在第一個訊息中,我們還沒有線程 ID。 - 然後,我們建立或取得前一個執行緒的執行緒。 - 我們在助理提出的問題的線索中加入一條新訊息。 - 我們執行線程並等待它完成。 - 我們取得訊息清單(並將其限制為 1),因為第一則訊息是對話中的最後一則訊息。 - 我們返回訊息內容和我們剛剛建立的線程ID。 ### 新增路由 我們需要為我們的應用程式建立 3 個 API 路由: 1、派新助理進行處理。 2. 透過URL獲取特定助手。 3. 新增訊息給助手。 在「app/api」中建立一個名為assistant的新資料夾,並在其中建立一個名為「route.ts」的新檔案。裡面加入如下程式碼: ``` import {client} from "@openai-assistant/trigger"; import {prisma} from "@openai-assistant/helper/prisma.client"; export async function POST(request: Request) { const body = await request.json(); if (!body.url) { return new Response(JSON.stringify({error: 'URL is required'}), {status: 400}); } // We send an event to the trigger to process the documentation const {id: eventId} = await client.sendEvent({ name: "process.documentation.event", payload: {url: body.url}, }); return new Response(JSON.stringify({eventId}), {status: 200}); } export async function GET(request: Request) { const url = new URL(request.url).searchParams.get('url'); if (!url) { return new Response(JSON.stringify({error: 'URL is required'}), {status: 400}); } const assistant = await prisma.assistant.findFirst({ where: { url: url } }); return new Response(JSON.stringify(assistant), {status: 200}); } ``` 第一個「POST」方法取得一個 URL,並使用用戶端傳送的 URL 觸發「process.documentation.event」作業。 第二個「GET」方法從我們的資料庫中透過客戶端發送的 URL 取得助手。 現在,讓我們建立向助手新增訊息的路由。 在「app/api」內部建立一個新資料夾「message」並新增一個名為「route.ts」的新文件,然後新增以下程式碼: ``` import {prisma} from "@openai-assistant/helper/prisma.client"; import {client} from "@openai-assistant/trigger"; export async function POST(request: Request) { const body = await request.json(); // Check that we have the assistant id and the message if (!body.id || !body.message) { return new Response(JSON.stringify({error: 'Id and Message are required'}), {status: 400}); } // get the assistant id in OpenAI from the id in the database const assistant = await prisma.assistant.findUnique({ where: { id: +body.id } }); // We send an event to the trigger to process the documentation const {id: eventId} = await client.sendEvent({ name: "question.assistant.event", payload: { content: body.message, aId: assistant?.aId, threadId: body.threadId }, }); return new Response(JSON.stringify({eventId}), {status: 200}); } ``` 這是一個非常基本的程式碼。我們從客戶端獲取訊息、助手 ID 和線程 ID,並將其發送到我們之前建立的「question.assistant.event」。 最後要做的事情是建立一個函數來獲取我們所有的助手。 在「helpers」內部建立一個名為「get.list.ts」的新函數並新增以下程式碼: ``` import {prisma} from "@openai-assistant/helper/prisma.client"; // Get the list of all the available assistants export const getList = () => { return prisma.assistant.findMany({ }); } ``` 非常簡單的程式碼即可獲得所有助手。 我們已經完成了後端🥳 讓我們轉到前面。 ---  ## 建立前端 我們將建立一個基本介面來新增 URL 並顯示已新增 URL 的清單:  ### 首頁 將 `app/page.tsx` 的內容替換為以下程式碼: ``` import {getList} from "@openai-assistant/helper/get.list"; import Main from "@openai-assistant/components/main"; export default async function Home() { const list = await getList(); return ( <Main list={list} /> ) } ``` 這是一個簡單的程式碼,它從資料庫中取得清單並將其傳遞給我們的 Main 元件。 接下來,讓我們建立“Main”元件。 在「app」內建立一個新資料夾「components」並新增一個名為「main.tsx」的新檔案。 **新增以下程式碼:** ``` "use client"; import {Assistant} from '@prisma/client'; import {useCallback, useState} from "react"; import {FieldValues, SubmitHandler, useForm} from "react-hook-form"; import {ChatgptComponent} from "@openai-assistant/components/chatgpt.component"; import {AssistantList} from "@openai-assistant/components/assistant.list"; import {TriggerProvider} from "@trigger.dev/react"; export interface ExtendedAssistant extends Assistant { pending?: boolean; eventId?: string; } export default function Main({list}: {list: ExtendedAssistant[]}) { const [assistantState, setAssistantState] = useState(list); const {register, handleSubmit} = useForm(); const submit: SubmitHandler<FieldValues> = useCallback(async (data) => { const assistantResponse = await (await fetch('/api/assistant', { body: JSON.stringify({url: data.url}), method: 'POST', headers: { 'Content-Type': 'application/json' } })).json(); setAssistantState([...assistantState, {...assistantResponse, url: data.url, pending: true}]); }, [assistantState]) const changeStatus = useCallback((val: ExtendedAssistant) => async () => { const assistantResponse = await (await fetch(`/api/assistant?url=${val.url}`, { method: 'GET', headers: { 'Content-Type': 'application/json' } })).json(); setAssistantState([...assistantState.filter((v) => v.id), assistantResponse]); }, [assistantState]) return ( <TriggerProvider publicApiKey={process.env.NEXT_PUBLIC_TRIGGER_PUBLIC_API_KEY!}> <div className="w-full max-w-2xl mx-auto p-6 flex flex-col gap-4"> <form className="flex items-center space-x-4" onSubmit={handleSubmit(submit)}> <input className="flex-grow p-3 border border-black/20 rounded-xl" placeholder="Add documentation link" type="text" {...register('url', {required: 'true'})} /> <button className="flex-shrink p-3 border border-black/20 rounded-xl" type="submit"> Add </button> </form> <div className="divide-y-2 divide-gray-300 flex gap-2 flex-wrap"> {assistantState.map(val => ( <AssistantList key={val.url} val={val} onFinish={changeStatus(val)} /> ))} </div> {assistantState.filter(f => !f.pending).length > 0 && <ChatgptComponent list={assistantState} />} </div> </TriggerProvider> ) } ``` 讓我們看看這裡發生了什麼: - 我們建立了一個名為「ExtendedAssistant」的新接口,其中包含兩個參數「pending」和「eventId」。當我們建立一個新的助理時,我們沒有最終的值,我們將只儲存`eventId`並監聽作業處理直到完成。 - 我們從伺服器元件取得清單並將其設定為新狀態(以便我們稍後可以修改它) - 我們新增了「TriggerProvider」來幫助我們監聽事件完成並用資料更新它。 - 我們使用「react-hook-form」建立一個新表單來新增助手。 - 我們新增了一個帶有一個輸入「URL」的表單來提交新的助理進行處理。 - 我們迭代並顯示所有現有的助手。 - 在提交表單時,我們將資訊傳送到先前建立的「路由」以新增助理。 - 事件完成後,我們觸發「changeStatus」以從資料庫載入助手。 - 最後,我們有了 ChatGPT 元件,只有在沒有等待處理的助手時才會顯示(`!f.pending`) 讓我們建立 `AssistantList` 元件。 在「components」內,建立一個新檔案「assistant.list.tsx」並在其中加入以下內容: ``` "use client"; import {FC, useEffect} from "react"; import {ExtendedAssistant} from "@openai-assistant/components/main"; import {useEventRunDetails} from "@trigger.dev/react"; export const Loading: FC<{eventId: string, onFinish: () => void}> = (props) => { const {eventId} = props; const { data, error } = useEventRunDetails(eventId); useEffect(() => { if (!data || error) { return ; } if (data.status === 'SUCCESS') { props.onFinish(); } }, [data]); return <div className="pointer bg-yellow-300 border-yellow-500 p-1 px-3 text-yellow-950 border rounded-2xl">Loading</div> }; export const AssistantList: FC<{val: ExtendedAssistant, onFinish: () => void}> = (props) => { const {val, onFinish} = props; if (val.pending) { return <Loading eventId={val.eventId!} onFinish={onFinish} /> } return ( <div key={val.url} className="pointer relative bg-green-300 border-green-500 p-1 px-3 text-green-950 border rounded-2xl hover:bg-red-300 hover:border-red-500 hover:text-red-950 before:content-[attr(data-content)]" data-content={val.url} /> ) } ``` 我們迭代我們建立的所有助手。如果助手已經建立,我們只顯示名稱。如果沒有,我們渲染`<Loading />`元件。 載入元件在螢幕上顯示“正在載入”,並長時間輪詢伺服器直到事件完成。 我們使用 Trigger.dev 建立的 useEventRunDetails 函數來了解事件何時完成。 事件完成後,它會觸發「onFinish」函數,用新建立的助手更新我們的客戶端。 ### 聊天介面  現在,讓我們加入 ChatGPT 元件並向我們的助手提問! - 選擇我們想要使用的助手 - 顯示訊息列表 - 新增我們要傳送的訊息的輸入和提交按鈕。 在「components」內部新增一個名為「chatgpt.component.tsx」的新文件 讓我們繪製 ChatGPT 聊天框: ``` "use client"; import {FC, useCallback, useEffect, useRef, useState} from "react"; import {ExtendedAssistant} from "@openai-assistant/components/main"; import Markdown from 'react-markdown' import {useEventRunDetails} from "@trigger.dev/react"; interface Messages { message?: string eventId?: string } export const ChatgptComponent = ({list}: {list: ExtendedAssistant[]}) => { const url = useRef<HTMLSelectElement>(null); const [message, setMessage] = useState(''); const [messagesList, setMessagesList] = useState([] as Messages[]); const [threadId, setThreadId] = useState<string>('' as string); const submitForm = useCallback(async (e: any) => { e.preventDefault(); setMessagesList((messages) => [...messages, {message: `**[ME]** ${message}`}]); setMessage(''); const messageResponse = await (await fetch('/api/message', { method: 'POST', body: JSON.stringify({message, id: url.current?.value, threadId}), })).json(); if (!threadId) { setThreadId(messageResponse.threadId); } setMessagesList((messages) => [...messages, {eventId: messageResponse.eventId}]); }, [message, messagesList, url, threadId]); return ( <div className="border border-black/50 rounded-2xl flex flex-col"> <div className="border-b border-b-black/50 h-[60px] gap-3 px-3 flex items-center"> <div>Assistant:</div> <div> <select ref={url} className="border border-black/20 rounded-xl p-2"> {list.filter(f => !f.pending).map(val => ( <option key={val.id} value={val.id}>{val.url}</option> ))} </select> </div> </div> <div className="flex-1 flex flex-col gap-3 py-3 w-full min-h-[500px] max-h-[1000px] overflow-y-auto overflow-x-hidden messages-list"> {messagesList.map((val, index) => ( <div key={index} className={`flex border-b border-b-black/20 pb-3 px-3`}> <div className="w-full"> {val.message ? <Markdown>{val.message}</Markdown> : <MessageComponent eventId={val.eventId!} onFinish={setThreadId} />} </div> </div> ))} </div> <form onSubmit={submitForm}> <div className="border-t border-t-black/50 h-[60px] gap-3 px-3 flex items-center"> <div className="flex-1"> <input value={message} onChange={(e) => setMessage(e.target.value)} className="read-only:opacity-20 outline-none border border-black/20 rounded-xl p-2 w-full" placeholder="Type your message here" /> </div> <div> <button className="border border-black/20 rounded-xl p-2 disabled:opacity-20" disabled={message.length < 3}>Send</button> </div> </div> </form> </div> ) } export const MessageComponent: FC<{eventId: string, onFinish: (threadId: string) => void}> = (props) => { const {eventId} = props; const { data, error } = useEventRunDetails(eventId); useEffect(() => { if (!data || error) { return ; } if (data.status === 'SUCCESS') { props.onFinish(data.output.threadId); } }, [data]); if (!data || error || data.status !== 'SUCCESS') { return ( <div className="flex justify-end items-center pb-3 px-3"> <div className="animate-spin rounded-full h-3 w-3 border-t-2 border-b-2 border-blue-500" /> </div> } return <Markdown>{data.output.content}</Markdown>; }; ``` 這裡正在發生一些令人興奮的事情: - 當我們建立新訊息時,我們會自動將其呈現在螢幕上作為「我們的」訊息,但是當我們將其發送到伺服器時,我們需要推送事件 ID,因為我們還沒有訊息。這就是我們使用 `{val.message ? <Markdown>{val.message}</Markdown> : <MessageComponent eventId={val.eventId!} onFinish={setThreadId} />}` - 我們用「Markdown」元件包裝訊息。如果您還記得,我們在前面的步驟中告訴 ChatGPT 以 MD 格式輸出所有內容,以便我們可以正確渲染它。 - 事件處理完成後,我們會更新線程 ID,以便我們從以下訊息中獲得相同對話的上下文。 我們就完成了🎉 ---  ## 讓我們聯絡吧! 🔌 作為開源開發者,您可以加入我們的[社群](https://discord.gg/nkqV9xBYWy) 做出貢獻並與維護者互動。請隨時造訪我們的 [GitHub 儲存庫](https://github.com/triggerdotdev/trigger.dev),貢獻並建立與 Trigger.dev 相關的問題。 本教學的源程式碼可在此處取得: [https://github.com/triggerdotdev/blog/tree/main/openai-assistant](https://github.com/triggerdotdev/blog/tree/main/openai-assistant) 感謝您的閱讀! --- 原文出處:https://dev.to/triggerdotdev/train-chatgpt-on-your-documentation-1a9g
曾經嘗試過在 Web 應用程式中使用 Docker 磁碟區進行熱重載嗎?如果你有跟我一樣可怕的經歷,你會喜歡 Docker 剛剛發布的最新功能:**docker-compose watch**!讓我向您展示如何升級現有專案以獲得出色的 Docker 開發設置,您的團隊*實際上*會喜歡使用它 🤩 TL;DR:看看這個 [docker-compose](https://github.com/Code42Cate/hackathon-starter/blob/main/docker-compose.yml) 檔案和 [官方文件](https://docs.docker.com/compose/file-watch/) 讓我們開始吧!  ## 介紹 Docker 剛剛發布了[Docker Compose Watch](https://docs.docker.com/compose/file-watch/) 和[Docker Compose Version 2.22](https://docs.docker.com/compose/release-notes/) #2220).有了這個新功能,您可以使用“docker-compose watch”代替“docker-compose up”,並自動將本機原始程式碼與 Docker 容器中的程式碼同步,而無需使用磁碟區! 讓我們透過使用我[之前寫過的](https://dev.project) 來看看它在實際專案中的工作原理。 在這個專案中,我有一個帶有前端、後端以及一些用於 UI 和資料庫的附加庫的 monorepo。 ``` ├── apps │ ├── api │ └── web └── packages ├── database ├── eslint-config-custom ├── tsconfig └── ui ``` 兩個應用程式(「api」和「web」)都已經進行了docker 化,而Dockerfile 位於專案的根目錄中([1](https://github.com/Code42Cate/hackathon-starter/blob/main/api.Dockerfile ), [2](https://github.com/Code42Cate/hackathon-starter/blob/main/web.Dockerfile)) `docker-compose.yml` 檔案如下所示: ``` services: web: build: dockerfile: web.Dockerfile ports: - "3000:3000" depends_on: - api api: build: dockerfile: api.Dockerfile ports: - "3001:3000"from within the Docker network ``` 這已經相當不錯了,但如您所知,在開發過程中使用它是一個 PITA。每當您更改程式碼時,您都必須重建 Docker 映像,即使您的應用程式可能支援開箱即用的熱重載(或使用 [Nodemon](https://www.npmjs.com/package/nodemon) 如果不)。 為了改善這一點,Docker Compose Watch [引入了一個新屬性](https://docs.docker.com/compose/file-watch/#configuration),稱為「watch」。 watch 屬性包含一個所謂的 **rules** 列表,每個規則都包含它們正在監視的 **path** 以及一旦路徑中的文件發生更改就會執行的 **action**。 ## 同步 如果您希望在主機和容器之間同步資料夾,您可以新增: ``` services: web: # shortened for clarity build: dockerfile: web.Dockerfile develop: watch: - action: sync path: ./apps/web target: /app/apps/web ``` 每當主機上的路徑“./apps/web/”中的檔案發生變更時,它將同步(複製)到容器的“/app/apps/web”。目標路徑中的附加應用程式是必要的,因為這是我們在 [Dockerfile](https://github.com/Code42Cate/hackathon-starter/blob/main/web.Dockerfile) 中定義的「WORKDIR」。如果您有可熱重新加載的應用程式,這可能是您可能會使用的主要內容。 ## 重建 如果您有需要編譯的應用程式或需要重新安裝的依賴項,還有一個名為 **rebuild** 的操作。它將重建並重新啟動容器,而不是簡單地在主機和容器之間複製檔案。這對你的 npm 依賴關係非常有幫助!讓我們補充一下: ``` services: web: # shortened for clarity build: dockerfile: web.Dockerfile develop: watch: - action: sync path: ./apps/web target: /app/apps/web - action: rebuild path: ./package.json target: /app/package.json ``` 每當我們的 package.json 發生變化時,我們都會重建整個 Dockerfile 以安裝新的依賴項。 ## 同步+重啟 除了同步和重建之外,中間還有一些稱為同步+重新啟動的操作。此操作將首先同步目錄,然後立即重新啟動容器而不重建。大多數框架通常都有無法熱重載的設定檔(例如「next.config.js」)(僅同步是不夠的),但也不需要緩慢重建。 這會將您的撰寫文件更改為: ``` services: web: # shortened for clarity build: dockerfile: web.Dockerfile develop: watch: - action: sync path: ./apps/web target: /app/apps/web - action: rebuild path: ./package.json target: /app/package.json - action: sync+restart path: ./apps/web/next.config.js target: /app/apps/web/next.config.js ``` ## 注意事項 一如既往,沒有[免費午餐](https://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization)和一些警告😬 新的“watch”屬性的最大問題是路徑仍然非常基本。文件指出,尚不支援 Glob 模式,如果您想具體說明,這可能會導致「大量」規則。 以下是一些有效和無效的範例: ✅ `應用程式/網路` 這將會符合`./apps/web`中的*所有*檔案(例如`./apps/web/README.md`,還有`./apps/web/src/index.tsx`) ❌ `build/**/!(*.spec|*.bundle|*.min).js` 遺憾的是(還沒?) 支持 Glob ❌ `~/下載` 所有路徑都是相對於專案根目錄的! ## 下一步 如果您對 Docker 設定仍然不滿意,還有很多方法可以改進它! 協作是軟體開發的重要組成部分,[孤島工作](https://www.personio.com/hr-lexicon/working-in-silos/)可能會嚴重損害您的團隊。緩慢的 Docker 建置和複雜的設定沒有幫助!為了解決這個問題並促進協作文化,您可以使用 Docker 擴展,例如 [Livecycle](https://hub.docker.com/extensions/livecycle/docker-extension?utm_source=github&utm_medium=code42cate&utm_campaign=docker-composeub&utm_medium=code42cate&utm_campaign=docker-composeub&utm_medium=code42cate&utm_campaign=docker-composeub&utm_medium=code42cate&utm_campaign=docker-composeub&utm_medium=code42cate&utm_campaign=docker-composeub&utm_medium=code42cate&utm_campaign=docker-composeub&utm_medium=code42cate&utm_campaign=docker-composeub&utm_medium=code42cate&utm_campaign=docker-composeub&utm_medium=code42cate&utm_campaign=docker-composeub&utm)立即與您的隊友分享您本地的docker-compose 應用程式。由於您已經在使用 Docker 和 docker-compose,因此您需要做的就是安裝 [Docker 桌面擴充](https://hub.docker.com/extensions/livecycle/docker-extension?utm_source=github&utm_medium=code42cate&utm_campaign=hackathonstarter )並點擊共享切換按鈕。然後,您的應用程式將透過隧道連接到網路,您可以與您的團隊分享您的唯一 URL 以獲取回饋!如果您想查看 Livecycle 的更多用例,我在[這篇文章](https://dev.to/code42cate/how-to-win-any-hackathon-3i99)中寫了更多相關內容:) 像往常一樣,確保您的 Dockerfile 遵循最佳實踐,尤其是在多階段建置和快取方面。雖然這可能會使編寫初始 Dockerfile 變得更加困難,但它將使您的 Docker 應用程式在開發過程中使用起來更加愉快。 建立一個基本的“.dockerignore”檔案並將依賴項安裝與程式碼建置分開還有很長的路要走! ## 結論 一如既往,我希望你今天學到新東西了!如果您在設定 Docker 專案時需要任何協助,或者您有任何其他回饋,請告訴我 乾杯,喬納斯:D --- 原文出處:https://dev.to/code42cate/say-goodbye-to-docker-volumes-j9l
本文列出了開發人員在 Kubernetes 叢集上安裝的五個必備工具。 🎉 請隨意探索這些專案,為儲存庫加註星標,並為您最喜歡的專案做出貢獻。 😉 事不宜遲,讓我們開始吧。 🏃♂️💨  ** ** ## **1\. [Odigos](https://odigos.io)** > 💡 分散式跟踪,無需更改程式碼。  Odigos 是一個開源可觀測性控制平面,使組織能夠建立和維護其可觀測性管道。 Odigos 自動產生 OpenTelemetry 格式的遙測資料到任何 Observability 後端,無需更改任何程式碼。 😻。 它會自動檢測我們的應用程式,從而無需我們自己設定 OpenTelemetry 或任何其他內容。奧迪戈斯處理這一切。 🤯 這一切之所以成為可能,是因為: * **自動化檢測👾:** Odigos 支援使用 OpenTelemetry 和 eBPF 對應用程式進行自動化檢測,無需修改程式碼。 * **通用觀測工具相容性🤝:** 與各種觀測工具平滑集成,提供全面的支援和高效的收集器管理。 ** ** ## **2\. [Argo CD](https://argoproj.github.io/cd/)**  Argo CD 是一款功能強大的 GitOps CD 工具,可協助自動化和簡化 Kubernetes 應用程式的部署和管理🚀。 Argo CD 主要功能包括 Web UI 💻、CLI、回滾功能和簡化的監控。 > **為什麼要使用 Argo CD 而不是傳統的 CD 工具?** 🤔 * **Git 作為單一事實來源 🤫:** Argo CD 使用 Git 作為應用程式和基礎設施配置的單一事實來源。如果出現問題,它可以輕鬆追蹤變更並回滾部署。 * **友善的 Web UI 💻:** Argo CD 提供了一個儀表板來管理和取得所有已部署應用程式的狀態。 * **輕鬆回滾 🔄:** 叢集與單獨的 git 儲存庫同步,因此我們只需要恢復 git 中的更改,叢集就會自動與 git 儲存庫同步。 * **災難復原 🌋:** 如果發生災難,只需將 git 儲存庫指向新建立的集群,它將擁有先前集群的所有配置。 這些功能使初學者和經驗豐富的 Kubernetes 用戶都可以使用它。 > 簡而言之,Argo CD 是 Kubernetes ☸️ 的 GitOps CD 工具,它使用 Git 作為應用程式和基礎設施配置的單一來源,並提供輕鬆的回滾、儀表板和災難復原功能。 ** ** ## **3\. [Nginx 入口控制器](https://docs.nginx.com/nginx-ingress-controller/)** > 💡 適用於 Kubernetes 環境的專用負載平衡器。 它是 Kubernetes 使用最廣泛的入口控制器。 ☸️ 它使用 Nginx 作為反向代理和負載平衡器。 它在具有 Nginx Plus 或 Nginx 開源實例的 Kubernetes 環境中執行 🏃♂️。 Nginx Ingress Controller 的主要職責是👇: * 負載平衡 Kubernetes 叢集中容器📦的流量。它監視 Kubernetes 入口資源並將流量路由到適當的 Kubernetes 服務和 Pod。 * 處理網路、流量管理👮♂️、通訊和安全性🔒。 * 根據其配置部署資源並根據入口資源定義自動更新規則。 > 簡而言之,它管理流量、安全性並根據 Kubernetes 入口資源和配置動態調整路由。 ** ** ## **4\. [適用於 Kubernetes 的 AWS 控制器](https://aws-controllers-k8s.github.io/community/)** > 💡 使用 Kubernetes 管理 AWS 服務。 **ACK** 是 AWS Controllers for Kubernetes 的縮寫,是一組自訂控制器,可實現 AWS 服務和 Kubernetes 叢集之間的集成,讓您可以直接從 Kubernetes 管理 AWS 服務。 ACK 讓您可以輕鬆建立利用 AWS 服務的可擴充且高度可用的 Kubernetes 應用程式。它提供了一種統一的方式來管理我們的應用程式及其相依性✨️。 適用於 Kubernetes 的 AWS 控制器的一些主要功能包括: * 直接從 Kubernetes 定義和使用 AWS 服務資源。 * 利用 AWS 託管服務來管理 Kubernetes 應用程式,無需在叢集外部定義資源或執行提供資料庫或訊息佇列等支援功能的服務。 > 簡而言之,ACK 使我們能夠直接從 Kubernetes 管理 AWS 服務,並提供一種在 Kubernetes 叢集內定義和使用 AWS 服務的統一方法。 ** ** ## **5\. [Kyverno](https://kyverno.io)** > 💡 為 Kubernetes 設計的策略引擎。 在 Kubernetes 中部署事物(例如 Pod 或 ConfigMap)時,設定規則/策略非常重要。 一個關鍵的做法是避免在生產中使用容器鏡像的“最新”標籤,因為它通常是正在進行的開發建置。 > **Kyverno 實際上做了什麼?** 🧐 在 Kubernetes 中,安全性問題是一個大問題,主要原因之一是**配置錯誤**。當沒有良好的規則(政策)時,就會出現這些安全問題。 這就是像 **Kyverno** 這樣的策略管理器發揮作用的地方。 😎 > 🚨 **注意:** Kyverno 不適用於 Kubernetes 以外的任何其他環境。如果您正在尋找與供應商無關的策略管理,您可以考慮使用諸如[開放策略代理程式](https://www.openpolicyagent.org/)之類的東西。 Kyverno 在我們的 Kubernetes 設定中管理策略,無論它們是關於安全還是只是良好實踐。 我們可以為前面提到的「最新」標籤問題等建立規則,或專注於安全性,例如確保您的容器映像在軟體供應鏈中是安全的。 > 簡而言之,Kyverno 是一個策略引擎,它允許使用者管理部署策略、解決錯誤配置等問題並推廣良好實踐,從而幫助管理安全性和最佳實踐。 ** ** > 如果您認為本文中未提及的任何其他有用的專案,請在下面的評論部分分享。 👇🏻 那麼,這就是本文的內容。非常感謝您的閱讀! 🎉 --- 原文出處:https://dev.to/odigos/5-must-have-tools-to-install-on-your-kubernetes-cluster-489k
VSCode 寫程式技巧分享! ## 更聰明地複製、貼上 我見過人們透過執行以下操作來複製貼上程式碼: 1. 將滑鼠遊標移至單字開頭。 2. 按住左鍵點選。 3. 一直拖曳到單字最後。 4. 釋放左鍵點選。 5. 右鍵點選所選內容。 6. 按一下「複製」。 7. 在 VS Code 的檔案總管中捲動以尋找目標檔案。 8. 點選目標檔案。 9. 將遊標移到檔案中的所需位置。 8. 右鍵點選目標位置。 9. 按一下「貼上」。 這是一個有點慢的過程。特別是如果您需要多次應用此操作...改進複製貼上的一些方法是: - 使用“CTRL + C”進行**複製**,使用“CTRL + V”進行**貼上**。 - 使用“CTRL + SHIFT + 左/右箭頭”**增加/減少單字選擇**。 - 使用“SHIFT + 左/右”箭頭**按字元增加/減少選擇**。 - 點擊 VS Code 中的一行程式碼並按下「CTRL + X」將**將該行放入剪貼簿**。在任何地方使用“CTRL + V”都會**在其中插入該行程式碼**。 - 使用「ALT + 向上/向下箭頭」**將一行程式碼向上/向下移動**一個位置。 更聰明地複製貼上也意味著更聰明地導航。 ## 更聰明地導航 使用組合鍵“CTRL + P”,而不是手動瀏覽資源管理器窗格。這樣,您可以按名稱搜尋文件。這是一個“智能”搜尋,意味著它不僅會查找包含搜尋文本的單詞,還會查找組合,例如“prodetcon”還將查找“project-details-container.component.ts”。使用「CTRL + P」比看到有人在檔案總管窗格中掙扎要快得多,這本身就是一種痛苦(雙關語)。  不要透過捲動來尋找文件內的某些程式碼,而是使用以下組合鍵: - `CTRL + G`:轉到行 - `CTRL + F`:在檔案中搜尋(使用`ENTER`鍵導航到下一個符合專案) - `CTRL + 點選類別/函數/等`:轉到所述類別/函數/等的定義。 使用“CTRL + TAB”在上次開啟的檔案和目前開啟的檔案之間切換(或使用“TAB”進一步切換到其他開啟的檔案)。這比將遊標移到工作列、查找正確的標籤並點擊它打開要快得多。 > 注意:在 VS Code 中,以這種方式在開啟的檔案之間進行切換非常有效率。另外,在 Windows 中使用「ALT + TAB」在開啟的視窗之間切換。 ## 更聰明地重新命名 不要自己重命名變數的每一次出現。它既耗時又容易出錯。相反,請轉到該變數的定義並按“F2”,重命名它,然後按“ENTER”。這將改變每一次發生的情況。這不僅適用於變數,也適用於函數、類別、介面等。這也適用於跨文件。  ## 使用 Emmet [Emmet](https://emmet.io/) 是一個內容/程式碼輔助工具,可以更快、更有效率地編寫程式碼。它是[VS Code 的標準](https://code.visualstudio.com/docs/editor/emmet),因此不需要任何插件。這個概念很簡單:您開始輸入 Emmet 縮寫,按下“TAB”或“ENTER”,就會出現該縮寫的完整 Emmet 片段。 Emmet 縮寫的範例可以是「.grid>.col*3」。當您按下「TAB」或「ENTER」時,VS Code 會為您填寫整段程式碼:  Emmet 的一大優點是您也可以產生 [“lorem ipsum” 文字](https://docs.emmet.io/abbreviations/lorem-ipsum/)。例如,`ul>li*4>lorem4`將產生一個包含 4 個元素的無序列表,每個清單專案包含 4 個隨機單字。  ## 使用格式化程式 使用 VS Code 中的程式碼格式化程式來格式化程式碼。我強烈推薦[Prettier](https://prettier.io/docs/en/)。 使用程式碼格式化程式的好處之一是它還可以「美化」您的程式碼。因此,如果您從根本沒有佈局的地方複製貼上程式碼,您可以點擊格式組合鍵(“CTRL + ALT + F”)等等,您的程式碼現在“美化”了,更重要的是,可讀了。  > 注意:一個好的提示是在儲存時套用格式。您可以在設定中變更此設定(尋找「儲存時格式」)。 格式化不僅對你自己有用,而且對整個團隊有用,因為它強制團隊的程式碼更加一致。看看我的另一篇文章[在Angular 專案中強制執行前端指南](https://dev.to/kinginit/enforcing-front-end-guidelines-in-an-angular-project-4199) 了解更多資訊關於它。 ## 使用程式碼片段 程式碼片段是模板,可以更輕鬆地編寫重複的程式碼片段,例如 for 迴圈、while 語句等。  透過使用程式碼片段,您可以透過輸入最少的內容輕鬆建立程式碼區塊。您可以使用內建的程式碼片段,使用提供程式碼片段的擴展,甚至建立您自己的程式碼片段! 內建程式碼片段提供了多種語言的模板,例如 TypeScript、JavaScript、HTML、CSS 等。例如,您可以使用它輕鬆建立「switch」語句,如上所示。 VS Code Marketplace 有多個擴充功能可以提供您程式碼片段。例如 [Angular 片段](https://marketplace.visualstudio.com/items?itemName=johnpapa.Angular2)、[Tailwind UI 片段](https://marketplace.visualstudio.com/items?itemName=evondev.tailwindui-marketplace.visualstudio.com/items?itemName=evondev.tailwindui-evondev.tailwindui-片段)、[Bootstrap 片段](https://marketplace.visualstudio.com/items?itemName=thekalinga.bootstrap4-vscode) 等。 最後,您可以建立自己的片段。您可以為特定語言建立全域程式碼片段,也可以建立特定於專案的程式碼片段。我不會在這裡詳細介紹任何細節,但請查看有關[如何建立自己的片段](https://code.visualstudio.com/docs/editor/userdefinesnippets#_create-your-own-snippets)。 ## 利用“量子打字” 我將其稱為“量子輸入”,因為這確實加快了您在 VS Code 中輸入程式碼的速度。這都是關於多重選擇的。當您需要更改或新增文字到多行時,VS Code 允許您透過選擇這些多行並同時開始在這些行上鍵入來完成此操作。 按住“SHIFT + ALT”並拖曳多條線以進行選擇。您將看到這些行上出現多個鍵入遊標。只需開始輸入,文字就會同時加入。  如果您想將相同的文字新增至多個位置但它們不對齊,您可以按住「ALT」同時按一下您要鍵入相同文字的所有位置。  您也可以按住“ALT”並同時選擇多個單字。無需單擊某個位置,只需拖曳進行選擇,然後釋放左鍵單擊或雙擊即可選擇單個單字,同時按住“ALT”鍵。  ## 快速環繞選擇 程式碼通常必須用方括號、圓括號或大括號括起來。或某些內容需要用引號(單引號或雙引號)引起來。為此,人們通常會轉到起始位置,輸入起始括號,將遊標移到結束位置,然後輸入結束括號。更有效的方法是選擇需要包圍的零件,然後簡單地鍵入起始括號。 VS Code 會夠聰明,知道整個部分需要被包圍。  這適用於 `(`、`{`、`[`、`<`、`'` 和 `"`。 ## 利用 VS Code 重構技巧 您可以使用 VS Code 自動重構程式碼片段。例如,您可以讓 VS Code 為您產生它們,而不是編寫自己的 getter 和 setter。 要重構某些內容,只需選擇需要重構的內容,右鍵單擊,然後單擊“重構...”,甚至更快:使用“CTRL + SHIFT + R”。 根據您所在的文件,VS Code 可以為您提供多種重構。例如,對於 TypeScript,您可以使用「提取函數」、「提取常數」或「產生 get 和 set 存取器」。請參閱 [此處](https://code.visualstudio.com/docs/typescript/typescript-refactoring) 的 TypeScript 完整清單。 ## 使用正規表示式搜尋和替換 正規表示式 (RegEx) 可能是開發人員工具包中非常強大的工具,值得您花時間更好地熟悉它們。您不僅可以在自己的程式碼中使用它(例如,驗證模式、字串替換等),還可以在 VS Code 中使用它進行高級搜尋和替換。 ### 例子 在您所在的專案中,一些 CSS 選擇器以 `app-` 開頭並以 `-container` 結尾。由於新的指導方針,他們希望您將後綴“-container”更改為“-wrapper”。您可以嘗試進行簡單的搜尋和替換,方法是尋找“-container”並將其替換為“-page”,但是當您進行替換時,您會看到某些出現的內容已被替換,而這本不應該是這樣的(例如,名為“.unit-container-highlight”的 CSS 選擇器變成“.unit-wrapper-highlight”)。 透過RegEx,我們可以進行更細粒度的搜尋。使用捕獲組,我們可以提取我們想要保留的單詞,同時替換其餘的單詞。正規表示式看起來像是「app-([a-z\-]+)-container」。我們想要替換結果,使其以“-page”結尾。替換字串將類似於“app-$1-wrapper”。只要確保您選取了“使用正規表示式”即可。 > 注意:儘管正則表達式允許更細粒度的搜尋,但在進行實際替換之前請檢查搜尋窗格中的結果!  您可以透過允許搜尋僅應用於某些文件來獲得更多控制。範例可以只是 HTML 檔案(`*.html`),甚至只是整個資料夾(`src/app/modules`)。  如果您想在搜尋之前嘗試 RegEx 以確保它是正確的,請使用線上 RegEx 測試器,例如 [Regex101](https://regex101.com/)。如果您沒有或很少有 RegEx 經驗,請查看 [https://regexlearn.com/](https://regexlearn.com/learn/regex101)。 ## 使用工具自動化單調的工作 有時我們必須做一些單調的工作,例如建立模擬資料、為類別中的每個欄位建立函數、根據介面的屬性建立 HTML 清單專案等。俗話說: > 更聰明地工作,而不是更努力工作! 使用工具來自動化此類單調的工作,而不是自己完成所有繁瑣的工作。我常用的工具有: - [NimbleText](https://nimbletext.com/live):根據給定格式將行輸入轉換為特定輸出。 - [Mockaroo](https://www.mockaroo.com/):產生模擬資料並以多種格式(JSON、CSV、XML 等)輸出。 - [JSON Generator](https://json-generator.com/):也產生模擬資料,但專門針對 JSON。它有點複雜,但它允許定制結果。 使用 NimbleText 的一個很好的例子是基於幾個欄位在 HTML 中建立整個表單。我們有一個要在表單中顯示的欄位清單。每個欄位都有一個標籤和一個輸入。讓我們建立一些資料供 NimbleText 進行轉換: ``` first name, text last name, text email, email street, text number, number city, text postal code, text ``` 這裡我們有 7 行和 2 列。每行代表表單欄位。第一列是標籤的名稱,第二列是 HTML 輸入的類型。 在 NimbleText 中,我們保留設定不變(列分隔符號“,”和行分隔符號“\n”)。 每個表單欄位都應該位於類別為「.form-field」的「div」中,其中包含帶有文字的「label」和表單欄位的「input」。 NimbleText 的模式如下: ``` <div class="form-field"> <label for="<% $0.toCamelCase() %>"><% $0.toSentenceCase() %>:</label> <input id="<% $0.toCamelCase() %>" type="$1"/> </div> ``` 當我們查看輸出時,我們發現**大量**工作已經為我們完成: ``` <div class="form-field"> <label for="firstName">First name:</label> <input id="firstName" type="text"/> </div> <div class="form-field"> <label for="lastName">Last name:</label> <input id="lastName" type="text"/> </div> <div class="form-field"> <label for="email">Email:</label> <input id="email" type="email"/> </div> <div class="form-field"> <label for="street">Street:</label> <input id="street" type="text"/> </div> <div class="form-field"> <label for="number">Number:</label> <input id="number" type="number"/> </div> <div class="form-field"> <label for="city">City:</label> <input id="city" type="text"/> </div> <div class="form-field"> <label for="postalCode">Postal code:</label> <input id="postalCode" type="text"/> </div> ``` 因此,盡可能發揮創意並使用這些工具。 ## 結論 在 VS Code 中更快編碼取決於了解快捷鍵並充分利用 IDE 的強大功能。以下是所提及內容的快速總結: 1. 使用快捷鍵進行複製貼上。 2. 透過搜尋取代手動導航,導航更有效率。 3. 使用“F2”重新命名,而不是手動執行。 4. 使用 Emmet。 5. 使用格式化程式來獲得整潔的大綱(以及其他優點)。 6. 使用程式碼片段。 7. 量子型。 8. 使用VS Code重構。 9. RegEx 可以幫助您進行搜尋和取代。 10. 使用NimbleText等工具將單調的工作自動化。 我希望您喜歡閱讀本文。如果您知道有人可能需要一些幫助來更快地編碼,請隨時分享這篇文章! 如果您有任何疑問,請隨時與我們聯繫!謝謝! --- 原文出處:https://dev.to/kinginit/how-to-code-faster-vs-code-edition-4pa
## **簡介** 在本文中,我提供了主流 Python 函式庫的替代方案。 儘管主流函式庫得到了更強大的活躍社群的支持,但這些替代方案為 Python 領域增加了一些價值。 選擇您的庫取決於您的用例和個人喜好。  --- ## 1.[Taipy](https://github.com/Avaiga/taipy) 而非 Streamlit Taipy 是這個街區的新來者。就像 Streamlit 一樣,Taipy 提供了一種建立互動式 GUI 的簡單方法; 然而,Taipy 解決了 Streamlit 的大部分限制/低效率: - 管理同步/非同步呼叫 - 完全筆記型電腦相容性 - 多用戶 - 為您的佈局、樣式等提供更多自訂功能(無需 CSS) - 大資料支持 - 更好的性能  ---  我們感謝任何幫助我們發展社區的幫助🌱 --- ## 2.[Polars](https://github.com/pola-rs/polars)取代Pandas Polars 的靈感來自於 Python 的皇室成員:Pandas。就像它一樣,它是一個為處理資料而建立的 DataFrame 庫,但在處理大型資料集時它確實表現出色。 Polars 的速度比 Pandas 快 10 到 100 倍,主要原因有二: - Polars 內建平行處理 - 用 Rust 寫 北極熊會取代熊貓嗎?只有時間會給出答案。  --- ## 3.[Dask](https://github.com/dask/dask)取代PySpark Dask 可以結合平行計算來處理大於記憶體的計算。 當您希望擴展計算時,它是一個很好的工具。它是用 Python 原生編寫的,使得學習/使用變得輕而易舉(對於 Python 開發人員來說)。 它不是為超大資料(超過 2 TB)而設計的,如果您正在處理類似 SQL 的查詢,它也沒有競爭力(與 Spark)。 非常適合筆記型電腦執行。  --- ## 4.[LightGBM](https://github.com/microsoft/LightGBM)而不是XGBoost XGBoost 和 LightGBM 都是梯度增強函式庫。 XGBoost 是 Kaggle 的最愛,但在處理大型資料集時,LightGBM 針對具有平行計算的大資料進行了最佳化。  --- ## 5.[PyCaret](https://github.com/pycaret/pycaret)取代Scikit-learn 與 Scikit-learn 一樣,您可以使用 PyCaret 執行機器學習任務。 PyCaret 透過更簡單的程式碼來展示其功能,這是開始 ML 學習專案的好方法。 PyCaret 簡單易學。它的一些高級功能是: - EDA 和資料處理 - 建模/培訓 - 模型可解釋性 - 模型部署 它對各種機器學習步驟的端到端覆蓋使得 PyCaret 成為 ML 愛好者甚至是沒有時間進行更深入分析的高級資料科學家的絕佳工具!  --- ## 6.[Darts](https://github.com/unit8co/darts) 而非 tsfresh 這兩個庫都致力於時間序列。然而,它們有不同的目的。 Darts 是時間序列的「sklearn」。它涵蓋了 DS 在處理時間序列時所需的所有不同功能: - 資料發現 - 資料預處理 - 預測 - 模型評估/選擇 不再需要使用多個庫;這一切都可以在 Darts 中找到。 tsfresh 旨在自動化為 ML 訓練步驟準備時間序列時最具挑戰性的步驟之一:特徵提取和選擇。 tsfresh 可以從您的時間序列中提取大量特徵,並幫助您辨識相關特徵。  --- ## 7.[PyTorch](https://github.com/pytorch/pytorch) 而非 TensorFlow 兩者都是參與深度學習的資料科學家和研究人員的首選庫。 幾年前,TensorFlow 是一個受歡迎的庫,但從 2020 年到 2021 年,PyTorch 已經趕上了 TensorFlow。 您如何在這兩個令人難以置信的庫之間做出選擇? PyTorch 似乎在研究方面具有優勢,更專注於 NLP。 此外,PyTorch 更具 Python 風格,學習曲線也更容易。 如果您是深度學習遊戲的新手,我建議您嘗試一下 PyTorch;否則,兩個庫都是不相上下的。  --- ## 8.[Arcade](https://github.com/pythonarcade/arcade) 而非 Pygame 在 Python 2D 遊戲領域,Pygame 獲得了良好的聲譽,而 Arcade 作為一個較新但完善的庫,在以下屬性上脫穎而出: - 內建遊戲循環 - 高效率的事件模型 - 更多功能 - 更人性化 兩個庫都有自己的優點;然而,Arcade 是更適合初學者的選擇。 Pygame 確實提供了一種教育替代方案 Pygame Zero,對於新開發人員來說是一個更好的選擇。  --- ## 9.[spaCy](https://github.com/explosion/spaCy)取代NLTK NLTK 是自然語言處理的主流函式庫,具有豐富的功能。 然而,隨著複雜性的增加,學習曲線也會變得更加陡峭。 SpaCy 是開始該領域的一個不錯的選擇。 SpaCy 的另一個優點是它是為了優化 NLP 應用程式而建構的,專注於更高的速度和效率。  --- ## 10.[Ruff](https://github.com/astral-sh/ruff) 而非 Pylint Linters 是任何編碼之旅的重要組成部分。 Pylint 被廣泛使用,但 Ruff 提高了過程的有效性和速度。 眾所周知,它比同等的 linter 快 10-100 倍,Ruff 絕對是一個很好的庫,可以作為 Pylint 的替代品。  --- 我希望你喜歡這篇文章!🙂 我是一名新手作家,歡迎任何改進建議! 如果您有最喜歡的庫而不是更主流的庫,請隨時分享。  --- 原文出處:https://dev.to/taipy/new-open-source-vs-old-open-source-33k7
## TL;DR 🔍 探索在 Kubernetes 上部署 GitLab 的逐步指南,並專注於 Omnibus 套件配置。了解如何設定 PostgreSQL、SMTP、Container Registry、Sidekiq、Prometheus 指標和備份。使用 Glasskube GitLab Kubernetes Operator 探索替代方案,簡化流程並將設定時間縮短至僅 5 分鐘。 --- ## 我們需要您的回饋! 🫶 在下面的評論中分享您的想法!讓我們知道您想要更多內容的主題。如果本指南有幫助,請點擊貓並留下一顆星,以支持我們建立更多以開發人員為中心的內容。您的回饋很重要! [ ](https://github.com/glasskube/operator) --- ## 讓我們開始吧🏌️ [GitLab](https://glasskube.eu/en/s/kubernetes-operator/gitlab/) 是一個以軟體工程團隊為導向的開源 DevSecOps 平台。 有兩種方式可用於在 Kubernetes 叢集上部署 GitLab: 1.GitLab雲端原生混合 2.GitLab包(綜合) ## GitLab 雲端原生混合 部署 GitLab Cloud 原生混合架構僅在查詢特定用例中才有意義。例如 - 如 [GitLab 決策樹](https://docs.gitlab.com/ee/administration/reference_architectures/#decision-tree) 所示 - 如果 GitLab 實例需要為至少 3,000 個使用者提供服務。對於這種部署,GitLab 元件將單獨安裝在不同的 docker 容器中。最低要求為 10 個節點,總共 19 個 vCPU 和 60 GB 內存,這將導致每月數千美元的雲端成本。 <img width="100%" style="width:100%" src="https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExbHl6eXltNWw0ZDNjbnNqbDdicXBpbzNpdX6e nlfaWQmY 3Q9Zw/2aIZfQdC2V7bBvU5t2/giphy.gif"> 因此,在大多數情況下,GitLab 雲端原生是不需要的,而且過於複雜。 **那麼,如何在 Kubernetes 上部署 GitLab Omnibus?** ## Kubernetes 上的 GitLab Omnibus 使用「omnibus」這個名稱,GitLab 也發布了一體化軟體包,這些軟體包可以作為docker 映像[`hub.docker.com/r/gitlab/gitlab-ce`](https://hub.docker. com /r/gitlab/gitlab-ce),可以透過環境變數輕鬆配置。正確進行設定可以輕鬆在 Kubernetes 上部署 GitLab。 應正確配置以下重要元件,以便歸檔合理的 Kubernetes 設定: 1.PostgreSQL資料庫 2. SMTP配置 3. Kubernetes 上的 GitLab 容器註冊表 4. Sidekiq、Gitaly 和 Puma 配置 5. 普羅米修斯指標 6. Kubernetes 上的 GitLab 備份 ### Kubernetes 上的 GitLab:設定外部 PostgreSQL 資料庫 建立 PostgreSQL 資料庫可以使用 [CloudNativePG PostgreSQL Operator](https://cloudnative-pg.io/) 來完成。安裝完 Operator 後,可以透過套用 Kubernetes CR 來部署新的 Postgres 叢集: ``` kind: Cluster apiVersion: postgresql.cnpg.io/v1 metadata: name: gitlab spec: enableSuperuserAccess: false instances: 2 bootstrap: initdb: database: gitlabhq_production owner: gitlab storage: size: 20Gi ``` 重要的是,資料庫名稱為“gitlabhq_product”,而配置的“gitlab”資料庫使用者是資料庫的擁有者。在本例中,我們建立了一個由兩個 PostgreSQL 副本組成的集群,以確保資料庫保持可用,即使執行主副本的節點發生故障也是如此。這稱為高可用性 (HA)。 現在,我們建立了自己的 PostgreSQL 集群,必須在「gitlab.rb」檔案中停用綜合映像中包含的資料庫。 ``` postgresql['enable'] = false gitlab_rails['db_adapter'] = 'postgresql' gitlab_rails['db_encoding'] = 'unicode' gitlab_rails['db_host'] = 'gitlab-pg-rw' gitlab_rails['db_password'] = '<your-password>' ``` 很好,我們已經為 GitLab 安裝提供了雲端原生資料庫。 <img width="25%" style="width:25%" src="https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExc2VydjJoN3BsN2RycDY5N3prZHhoaW8xdTYxenJoN3BsN2RycDY5N3prZHhoaW8xdTYxenhkbHdtBlcMpm30FmDFt0Fyg n;ipPlcmDMlcM40M400005450000200020025400000 mY3 Q9Zw/SVH9y2LQUVVCRcqD7o/giphy.gif"> #### Kubernetes 上的 GitLab:設定 SMTP 憑證 為了確保您的 GitLab 實例能夠傳送電子郵件,您需要設定 SMTP 伺服器。這也可以在 `gitlab.rb` 檔案中完成。 ``` gitlab_rails['smtp_enable'] = ... gitlab_rails['smtp_address'] = ... gitlab_rails['smtp_port'] = ... gitlab_rails['smtp_user_name'] = ... gitlab_rails['smtp_password'] = ... gitlab_rails['smtp_tls'] = ... gitlab_rails['gitlab_email_from'] = ... ``` 例如,可以在 Brevo 平台上建立用於交易電子郵件的免費 smtp 伺服器。 <img width="25%" style="width:25%" src="https://media.giphy.com/media/0IR3vO2bWY1AQPAsAn/giphy.gif"> #### Kubernetes 上的 GitLab:容器註冊表 在眾多功能中,GitLab 支援充當容器註冊表。這是透過捆綁 docker 容器註冊表的參考實作來實現的,但預設情況下它是禁用的,因為正確設定它相當麻煩。 > **重要** > 重要的是要了解 GitLab 綜合容器中的所有請求將首先由內部 nginx 伺服器處理,然後分發到元件。 容器註冊表僅適用於 TLS 加密連接,因此我們需要透過入口負載平衡器停用 TLS 終止,並將加密流量直接傳送到 GitLab 容器。如果使用 NGINX 入口控制器,可以透過在入口中新增以下註解來完成:「nginx.ingress.kubernetes.io/ssl-passthrough: true」。 之後,必須套用以下`gitlab.rb`配置: ``` registry['enable'] = true gitlab_rails['registry_enabled'] = true registry['token_realm'] = "https://" + ENV['GITLAB_HOST'] gitlab_rails['registry_enabled'] = true gitlab_rails['registry_host'] = ENV['GITLAB_REGISTRY_HOST'] gitlab_rails['registry_api_url'] = "http://localhost:5000" registry_external_url 'https://' + ENV['GITLAB_REGISTRY_HOST'] registry_nginx['redirect_http_to_https'] = true registry_nginx['listen_port'] = 5443 registry_nginx['ssl_certificate'] = "/etc/gitlab/ssl/tls.crt" registry_nginx['ssl_certificate_key'] = "/etc/gitlab/ssl/tls.key" registry_nginx['real_ip_trusted_addresses'] = ['10.0.0.0/8', '172.16.0.0/12', '192.168.0.0/16'] registry_nginx['server_names_hash_bucket_size'] = 128 ``` 此外,可以配置 S3 儲存桶(或相容的雲端儲存端點),以便所有影像層不會儲存在磁碟區內,而是儲存在可擴充的 S3 中 ### Kubernetes 上的 GitLab:Sidekiq、Gitaly 和 Puma 配置 Puma(Ruby 的 HTTP 伺服器)、Sidekiq(作業排程器)和 Gitaly(GitLabs Git 橋接器)都可以使用自訂數量的工作執行緒/執行緒來啟動。最佳配置在很大程度上取決於您的用例和需要支援的使用者數量。合理的最小配置是: ``` puma['worker_processes'] = 2 sidekiq['max_concurrency'] = 9 ``` ### Kubernetes 上的 GitLab:Prometheus 指標 GitLab 綜合包在鏡像中附帶了自己的 prometheus 實例。由於大多數 Kubernetes 叢集中已經存在 Prometheus 實例,因此可以安全地停用包含的 Prometheus。 ``` prometheus_monitoring['enable'] = false ``` ServiceMonitor 可以用來告訴正在執行的 Prometheus 實例在下列連接埠上監視 GitLabs 元件所公開的指標端點: - 8082(sidekiq) - 9168(gitlab) - 9236(義大利) ### Kubernetes 上的 GitLab:備份 嗯,在 Kubernetes 上備份 GitLab 本身就是一個技術指南。最簡單的方法是使用 [Velero](https://velero.io/) 等備份解決方案備份完整的命名空間。 ## 玻璃立方體 GitLab Kubernetes Operator 了解Glasskube GitLab [Kubernetes Operator](https://glasskube.eu/en/r/glossary/kubernetes-operator/) - 我們的開發團隊對繁瑣的配置過程、耗時的設定和不斷的故障排除感到沮喪的產物與 GitLab 部署相關。為了應對這些挑戰,我們精心設計了一個簡化整個體驗的解決方案。 Glasskube GitLab Kubernetes Operator 部署一個完全配置的 GitLab 實例,其所有功能均透過自訂資源定義 (CRD) 巧妙抽象化。感謝操作員,花費過多時間進行設定和更新的日子已經結束。現在,您可以在短短 5 分鐘內輕鬆啟動新的 GitLab 實例。嘗試一下並向我們提供反饋! ### 安裝 Glasskube 運算符 第一步是透過 Helm Chart 安裝 Glasskube: ``` helm repo add glasskube https://charts.glasskube.eu/ helm repo update helm install my-glasskube-operator glasskube/glasskube-operator ``` 完整的文件可以在我們的[入門](https://glasskube.eu/docs/getting-started/install/)文件中找到。 ### 部署 GitLab > **重要** > 必須在「LoadBalancer」或「Ingress Host」上設定 DNS 專案。 SSL 憑證是 > 如果配置了“ClusterIssuer”,則由“LoadBalancer”或“cert-manager”自動產生。 **gitlab.yaml** ``` apiVersion: "v1" kind: "Secret" metadata: name: "gitlab-smtp" stringData: username: "..." password: "..." --- apiVersion: v1 kind: Secret metadata: name: gitlab-registry-secret stringData: accessKey: "..." secretKey: "..." --- apiVersion: "glasskube.eu/v1alpha1" kind: "Gitlab" metadata: name: "gitlab" spec: host: "gitlab.mycompany.eu" sshEnabled: true sshHost: "ssh.gitlab.mycompany.eu" smtp: host: "..." port: 465 fromAddress: "[email protected]" authSecret: name: "gitlab-smtp" tlsEnabled: true registry: host: "registry.gitlab.mycompany.eu" storage: s3: bucket: gitlab-registry accessKeySecret: name: gitlab-registry-secret key: accessKey secretKeySecret: name: gitlab-registry-secret key: secretKey region: ... ``` ``` kubectl apply -f gitlab.yaml ``` <img width="25%" style="width:25%" src="https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExa2RldHpiYnMzOWdlZTgwdWtqOHN3N3eG9I0NjVyd2l4m Y3Q9Zw/YRhUem7n2UaF9EK2PH/giphy.gif"> 就是這樣! 完整的自訂資源文件可以在 Glasskube 文件中找到 關於 [GitLab](https://glasskube.eu/docs/crd-reference/gitlab/) ### 在 Kubernetes 上部署 GitLab Runner <img width="25%" style="width:25%" src="https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExZDJsN2x6NTI0dWdhZW55MjBzMjFobHdtbDRtaHEycXlidWdhZW55MjBzMjFobHdtbDRtaHEycXlidWdhZW55MjBzMjFobHdtbDRtaHEycXlidGt. WQmY 3Q9Zw/945jGDodvZCDe/giphy.gif"> GitLab 上的運作程序是為持續整合和持續交付 (CI/CD) 管道提供支援的執行代理。 他們負責執行作業,即管道中的各個步驟或任務。 Glasskube Gitlab Kubernetes Operator 讓在 Gitlab 中新增執行器變得如此簡單。首先,需要透過「https://{{host}}/admin/runners/new」建立一個新的執行程式。之後,這些執行器令牌只需加入到「gitlab.yaml」規格中,Glasskube Kubernetes Operator 將自動產生並將這些執行器與 Gitlab 實例連接起來。 ``` runners: - token: glrt-xxxxXX-xxxxxXXXXX # can be generated at https://{{host}}/admin/runners/new ``` 完整的自訂資源文件可以在關於 [GitLab runner] 的 Glasskube 文件中找到(https://glasskube.eu/docs/crd-reference/gitlab/runner/) 現在安裝完成了。 Kubernetes Operator 的更新將自動更新 GitLab。 ## 結論 在 Kubernetes 上為少於 1000 個使用者部署 GitLab 實例不應該使用 GitLabs 雲端原生混合 Helm Charts 來完成,而應該使用專門安裝的 GitLab Omnibus 套件與雲端原生基礎架構結合來完成。 Glasskube Kubernetes 操作員負責處理這個問題。 --- [ ](https://github.com/glasskube/operator) --- 星星冰塊: # [`glasskube/operator`](https://github.com/glasskube/operator) --- 原文出處:https://dev.to/glasskube/gitlab-on-kubernetes-the-ultimate-deployment-guide-188b
## **TL;博士** 對於使用 VSCode 的 Python 開發人員、資料科學家和分析師來說,此編譯提供了一些擴展,可以提高 Python 和一般編碼需求的編碼生產力和效率。  <小時/> ## 1. [Taipy Studio](https://marketplace.visualstudio.com/items?itemName=Taipy.taipy-studio) Taipy 是一個開源 Python 庫,用於建立 Web 應用程式前端和後端。 您只需使用 Python 即可為您的資料/機器學習用例建立多頁面、多用戶和可自訂的 GUI。 但它不止於此。 Taipy 還可以處理您的後端,因為它允許管道編排和管理。 現在,回到 Taipy Studio 的 VSCode 擴充功能。此擴充功能是兩個工具的包裝器,旨在加速 Taipy 應用程式的建立。 - Taipy Studio Configuration Builder:圖形管道編輯器,全部在點擊環境中; - Taipy Studio GUI 助手:在編寫 GUI 時包括 IntelliSense。  <小時/>  {% cta https://github.com/Avaiga/taipy %} Star ⭐ Taipy 儲存庫 {% endcta %} 我們已經快有 2000 顆星了,沒有你我們無法做到這一點🙏 <小時/> ## 2. [Github Copilot](https://marketplace.visualstudio.com/items?itemName=GitHub.copilot) 還需要出示副駕駛嗎?這個工具就是您自己的程式碼助手。 利用人工智慧,Copilot 可以無縫地自動完成您的程式碼。 另一個主要功能是能夠提供上下文感知建議。 對於開發人員來說,這是一個偉大的遊戲規則改變者,可以節省時間和提高效率,並且將其直接作為 VSCode 擴展使用是完全有意義的。  <小時/> ## 3. [Rainbow CSV](https://marketplace.visualstudio.com/items?itemName=mechatroner.rainbow-csv) 光看名字,你就差不多能猜到這個工具的功能了。 Rainbow CSV 將透過以不同顏色突出顯示列來讓您的 CSV 檔案易於閱讀。 就這麼簡單,但對任何處理資料的人來說都很有幫助。真正改變使用者視覺體驗的遊戲規則。  <小時/> ## 4. [待辦事項樹](https://marketplace.visualstudio.com/items?itemName=Gruntfuggly.todo-tree) 對於需要在程式碼的待辦事項清單中進行組織的人來說,這個工具非常有用。使用此擴展,只需在需要時在程式碼中加入 TODO 或 FIXME 標記即可。 ToDo Tree 將會尋找這些標籤並將它們組織成樹狀結構。 現在您可以輕鬆返回標籤。  <小時/> ## 5. [Jupyter](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter) 如果您想使用類似筆記本的 IDE 來啟動資料/ML 專案以促進探索和實驗,VSCode 透過 Jupyter 擴充功能提供此功能。 當筆記型電腦的限制(例如擴展、部署、測試和維護)使得有必要轉向更傳統的編碼實踐時,在 VSCode 上進行所有設定只會讓事情變得更容易。  <小時/> ## 6. [Markdown 表情符號](https://marketplace.visualstudio.com/items?itemName=bierner.markdown-emoji) 這裡並沒有什麼真正令人驚訝的地方。此 VSCode 擴展為 VSCode Markdown 預覽提供表情符號支持,這是為任何 Markdown 專案加入表現和可讀性的好方法。  <小時/> ## 7. [Pylint](https://marketplace.visualstudio.com/items?itemName=ms-python.pylint) Pylint 與 Python linter 同名,是其在 VSCode 中的擴充。它透過分析程式碼、檢查錯誤並為您提供改進建議來幫助您提高效率。 確保您的腳本遵循所有編碼標準是必須的。  <小時/> ## 8. [Pylance](https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance) Pylance 是 Python 語言的支援。 它最初作為 Python 庫存在,但透過此擴充整合到 VSCode 中。 一些主要特點: - 程式碼完成 - 自動導入 - 與 Juypter 筆記本相容 - 語意突出顯示  <小時/> ## 9. [Liveshare](https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare) 使用此 VSCode 擴充功能可以輕鬆進行協作。無需配置任何東西;只需啟動 Liveshare 會話並繼續除錯會話即可。 Liveshare 也保留您所有的個人 IDE 首選項,讓協作更加輕鬆。  <小時/> ## 10. [Markdown 多合一](https://marketplace.visualstudio.com/items?itemName=yzhang.markdown-all-in-one) 此擴充增強了 VSCode 中 Markdown 的使用,並具有各種不同的功能: - 內容表生成 - 鍵盤快速鍵 - 程式碼區塊插入 - 預覽功能 該工具非常適合編寫“README.md”檔案。  <小時/> 由於各種原因,VSCode 已成為開發人員最常使用的 IDE 之一。 它的主要功能包括強大的 git 整合和跨平台支持,但擴展是一個突出的功能。 它們支援自訂您的環境,促進與各種工具的無縫整合。 <小時/> 希望您喜歡這篇文章! 我是一名新手作家,歡迎任何改進建議!  如果您有任何疑問,請隨時與我們聯繫。 --- 原文出處:https://dev.to/taipy/top-10-must-have-vscode-extensions-forpythonistas-561a
## 長篇大論;博士 如今,任何開發人員都可以利用人工智慧來建立強大的東西。 無需成為機器學習專家。 這裡有 7 個最好的庫,您可以使用它來增強您的開發並透過最先進的 AI 功能給用戶留下深刻的印象。 這些可以為你的專案帶來神奇的力量,所以不要忘記給他們加星號並支持他們🌟  --- ## 1. [CopilotKit](https://github.com/RecursivelyAI/CopilotKit):將 AI 功能引入 React 應用程式。 (ChatBot 和 CopilotTexarea)  常見的法學碩士產品用例被製作成簡單且可自訂的反應元件。 具有兩個元件: CopilotPortal:加入可以在您的應用程式內回答問題並採取行動的法學碩士! CopilotTextarea:任何具有 Github Copilot 功能的 <textarea/> 的直接替代品。 ``` import "@copilotkit/react-ui/styles.css"; import { CopilotProvider } from "@copilotkit/react-core"; import { CopilotSidebarUIProvider } from "@copilotkit/react-ui"; export default function App(): JSX.Element { return ( <CopilotProvider chatApiEndpoint="/api/copilotkit/chat"> <CopilotSidebarUIProvider> <YourContent /> </CopilotSidebarUIProvider> </CopilotProvider> ); } ``` {% cta https://github.com/RecursivelyAI/CopilotKit %} Star CopilotKit ⭐️ {% endcta %} --- ## 2. Tavily GPT 研究員 - 取得法學碩士學位以搜尋網路和資料庫  Tavilly 可讓您將 GPT 支援的研究和內容產生工具新增至您的 React 應用程式中,從而增強其資料處理和內容建立功能。 ``` # Create an assistant assistant = client.beta.assistants.create( instructions=assistant_prompt_instruction, model="gpt-4-1106-preview", tools=[{ "type": "function", "function": { "name": "tavily_search", "description": "Get information on recent events from the web.", "parameters": { "type": "object", "properties": { "query": {"type": "string", "description": "The search query to use. For example: 'Latest news on Nvidia stock performance'"}, }, "required": ["query"] } } }] ) ``` {% cta https://github.com/assafelovic/gpt-researcher %} 明星塔維利 ⭐️ {% endcta %} --- ## 3. Pezzo.ai - 可觀測性、成本和即時工程平台  用於管理 OpenAI 通話的集中平台。 優化您的提示和令牌使用。追蹤您的人工智慧使用情況。 免費且易於整合。 ``` const prompt = await pezzo.getPrompt("AnalyzeSentiment"); const response = await openai.chat.completions.create(prompt); ``` {% cta https://github.com/pezzolabs/pezzo %} 明星 Pezzo ⭐️ {% endcta %} --- ## 4. LangChain - 將人工智慧整合到行動鏈中。  易於使用的 API 和函式庫,用於將 LLM 新增到應用程式中。 將不同的人工智慧元件和模型連接在一起。 輕鬆嵌入上下文和語義資料以實現強大的整合。 ``` from langchain.llms import OpenAI from langchain import PromptTemplate llm = OpenAI(model_name="text-davinci-003", openai_api_key="YourAPIKey") # Notice "food" below, that is a placeholder for another value later template = """ I really want to eat {food}. How much should I eat? Respond in one short sentence """ prompt = PromptTemplate( input_variables=["food"], template=template, ) final_prompt = prompt.format(food="Chicken") print(f"Final Prompt: {final_prompt}") print("-----------") print(f"LLM Output: {llm(final_prompt)}") ``` {% cta https://github.com/langchain-ai/langchain %} 星朗鏈 ⭐️ {% endcta %} --- ## 5. [Weaviate](https://github.com/weaviate/weaviate) - 用於人工智慧增強專案的向量資料庫  Weaviate 是一個針對大型資料集快速、高效搜尋而最佳化的向量資料庫。 它支援與 OpenAI 和 Hugging Face 等提供者的 AI 模型和服務集成,從而實現資料分類和自然語言處理等高級任務。 它是一種雲端原生解決方案,具有高度可擴展性,可以滿足不斷變化的資料需求。 ``` import weaviate import json client = weaviate.Client( embedded_options=weaviate.embedded.EmbeddedOptions(), ) uuid = client.data_object.create({ }) obj = client.data_object.get_by_id(uuid, class_name='MyClass') print(json.dumps(obj, indent=2)) ``` {% cta https://github.com/weaviate/weaviate %} 星織 ⭐️ {% endcta %} --- ## 6. [PrivateGPT](https://github.com/imartinez/privateGPT) - 與您的文件聊天,100% 私密 💡  PrivateGPT 允許在應用程式內進行安全的、GPT 驅動的文件交互,確保資料隱私並增強上下文感知處理能力。 PrivateGPT 透過本地處理和儲存文件和上下文來確保隱私,而無需將資料傳送到外部伺服器。 ``` from privategpt import PrivateGPT, DocumentIngestion, ChatCompletion client = PrivateGPT(api_key='your_api_key') def process_documents_and_chat(query, documents): ingestion_result = DocumentIngestion(client, documents) chat_result = ChatCompletion(client, query, context=ingestion_result.context) return chat_result documents = ['doc1.txt', 'doc2.txt'] query = "What is the summary of the documents?" result = process_documents_and_chat(query, documents) print(result) ``` {% cta https://github.com/weaviate/weaviate %} 星織 ⭐️ {% endcta %} --- ## 7. SwirlSearch - 人工智慧驅動的搜尋。  LLM 支援的搜尋、摘要和輸出。 同時搜尋多個內容來源並產生整合輸出。 功能強大,可自訂各種資料來源的應用程式內整合。 {% cta https://github.com/swirlai/swirl-search %} 星旋搜尋 ⭐️ {% endcta %} --- 謝謝閱讀! 我希望這些可以幫助您使用人工智慧建立一些很棒的東西。 如果您喜歡並評論您想看到的任何其他庫或主題,請按讚。 --- 原文出處:https://dev.to/copilotkit/7-ai-libraries-every-dev-needs-to-know-to-be-a-wiz-4lim
嗨朋友👋 今天,我們來看看如何編寫一個**KILLER GitHub README 文件。**  自述文件是任何剛接觸您的儲存庫的人的第一個接觸點。 **完善的自述文件可以提供資訊、吸引並邀請參與**。 當您啟動新專案或開發人員參與您的儲存庫至關重要時,這特別有用。 一個很好的例子是,當您向[Quine's Creator Quests](https://www.quine.sh/?utm_source=devto&utm_campaign=killer_github_profile) 提交儲存庫時,這是一種獎勵開發人員的新型開源「賞金」創造社區喜愛的酷炫新倉庫。 在創作者任務中,擁有一份寫得好的自述文件確實可以幫助您將獎品帶回家。 :錢_帶_翅膀: 如果您想參與,請在 [Quine](https://www.quine.sh/?utm_source=devto&utm_campaign=killer_github_profile) 免費註冊並前往 _Quests_。 --- ## 1️⃣ 自述文件...這是什麼? 🔮 README 文件,通常是“.txt”或“.md”文件,是專案中最重要的文件。它是開源專案的登陸頁面,也是最明顯的文件部分。 _這是 Hoppscotch 專案的自述文件範例。_ [](https://github.com/hoppscotch/hoppscotch) 您的自述文件是**您為專案定調的地方**。 這就是為什麼應該包含幾個元素的原因。 ⬇️ --- ## 2️⃣ 10 個建置模組🧱 自述文件可以透過多種方式編寫;有些比其他更好。 以下是您應該能夠在專業自述文件中找到的主要部分類型。 如果以下內容與您的專案相關,我建議您嘗試將它們加入到您的自述文件中。 👇 **1.想出一個名字** 大量的儲存庫沒有好名字。花點時間想一個令人難忘的名字總是一個好的開始。 **2.寫一個介紹** 解釋專案目的和目標受眾的摘要。 **3.目錄** 許多存儲庫未能加入此部分。組織良好的目錄有助於使您的儲存庫清晰易懂。 **4.先決條件和安裝說明** 列出各種逐步安裝說明。 _這裡的清晰度至關重要。_ ✨ **5.使用者指南/示範** 本節重點介紹如何透過範例和可選命令使用您的專案。我喜歡的一種方法是加入_如何執行專案_以及用戶如何使用它的螢幕記錄。 **6。文件/幫助中心** 如果您編寫了文件、常見問題或可以充當_幫助中心_的空間,請在此處寫下它或加入其連結。 **7.貢獻** 簡要解釋如何為您的文件做出貢獻並加入指向您的 CONTRIBUTING.md 文件的連結。在這裡或在單獨的部分中,您還可以藉此機會列出您的貢獻者並感謝他們。 **8.致謝** 使用或協助取得外部資源。僅當與您的儲存庫相關時才需要此部分。 **9.聯絡資訊** 如果您正在嘗試發展專案並建立協作,本節非常有用。 **10.權限資訊** 這是指您為專案選擇的許可證類型。澄清其他人如何使用您的內容至關重要。 👍 --- ## 3️⃣ 美化它💄 自述文件可以用各種文字格式編寫,其中 Markdown 是最常見的一種。 Markdown 可讓您使用簡單的純文字語法,支援建立標題、清單、連結和其他元素,使文件更具可讀性和組織性。 **Markdown 也支援 HTML 程式碼**,這拓寬了您可以做的事情的範圍。 👇 --- ### 標識 如果您已經為專案建立了徽標,則將其新增至自述文件的開頭是標準做法。 為此,請在自述文件中新增並修改以下程式碼: ``` <p align="center"> <!-- You can add your logo in the _src_ below --> <img src="https://www.amug.com/wp-content/uploads/2016/09/you-logo-here-300x106.png" /> </p> ``` --- ### 徽章 您經常會發現好的自述文件在其介紹部分中提供了徽章。 這些可以看起來像這樣: <p對齊=“中心”> <!-- 您可以在此處新增您的徽章 --> <!-- 如果您從未加入過徽章,請前往 https://img.shields.io/badges/static-badge --> <!-- 按照說明產生 URL 連結加入到下面 --> <img src="https://img.shields.io/badge/STARS-20K-green" /> <img src="https://img.shields.io/badge/FORKS-15K-blue" /> <img src="https://img.shields.io/badge/npm-v.0.21.0-red" /> <img src="https://img.shields.io/badge/LICENSE-MIT-green" /> </p> 正如您所看到的,這些突出顯示了維護人員想要闡明的一些領域。 以下是將 _static_ 徽章新增至自述文件的方法: ``` <p align="center"> <!-- You can add your badges here --> <!-- If you have never added badges, head over to https://img.shields.io/badges/static-badge, follow the instructions and generate URL links to add below --> <img src="https://img.shields.io/badge/STARS-20K-green" /> <img src="https://img.shields.io/badge/FORKS-15K-blue" /> <img src="https://img.shields.io/badge/npm-v.0.21.0-red" /> <img src="https://img.shields.io/badge/LICENSE-MIT-green" /> </p> ``` **注意**:_有一些高級動態選項我們不會在這裡討論。_ --- ### 圖示 近年來,圖標變得相當突出。 您可以將它們新增至您的_聯絡資訊_或您的_技術堆疊_部分。您可以找到 X(_以前的 Twitter_)和 Linkedin 的圖示範例。 <p對齊=“左”> <a href="https://twitter.com/fernandezbap" target="blank"><imgalign="center" src="https://img.shields.io/badge/X-000000?style=for - the-badge&logo=x&logoColor=white" alt="fernandezbap" /></a> </p> <p對齊=“左”> <a href="https://www.linkedin.com/in/baptiste-fernandez-%E5%B0%8F%E7%99%BD-0a958630/" target="blank"><img src="https: //img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white" alt="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the -badge&logo=linkedin&logoColor=white" /></a> </p> 建立您自己的: 1️⃣ 前往此儲存庫[此處](https://github.com/alexandresanlim/Badges4-README.md-Profile#-social-) 2️⃣ 找到_社交_和/或_技術堆疊_,然後“複製”其連結 3️⃣ 將連結「貼上」到如下所示的「href」中 ``` <p align="left"> <!-- Add your own socials inside "href" --> <a href="https://twitter.com/fernandezbap" target="blank"><img align="center" src="https://img.shields.io/badge/X-000000?style=for-the-badge&logo=x&logoColor=white" alt="fernandezbap" /></a> </p> <p align="left"> <a href="https://www.linkedin.com/in/baptiste-fernandez-%E5%B0%8F%E7%99%BD-0a958630/" target="blank"><img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white" alt="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white" /></a> </p> ``` --- ## 4️⃣ 進階技巧🛠️ ### 互動內容🎥 您可以考慮嵌入影片或小部件來獲取互動式內容。 在自述文件的_演示_部分中,您可以嵌入影片。 **⭐️提示:** 有時,影片的尺寸太大,將影片上傳到 YouTube 然後連結出來更有意義。 如果您想讓它更加直觀,這裡有加入圖片/影片縮圖的程式碼,一旦您點擊它,該縮圖就會重定向到您的 YouTube 影片。 ``` <p align="center"> <a href="THE LINK TO YOUR YOUTUBE VIDEO HERE"> <img src="YOUR IMAGE/VIDEO THUMBNAIL SOURCE HERE"/> </a> </p> ``` --- ### Markdown 掌握 ✨ 有許多進階 Markdown 功能可以讓你的 README 看起來更漂亮。 您可以查看這個很酷的[repo](https://github.com/DavidWells/advanced-markdown),其中列出了其中一些功能。 我特別喜歡的一個是 **_切換列表_** 或更常見的名稱是_可折疊部分。_ 它們對於使您的自述文件看起來簡潔明了特別有用。這是一個例子:  以下是用於建立您自己的切換清單的 MARKDOWN 模板: ``` <details> <summary>Toggle List Example</summary> ### Heading 1. ABC 2. DEF * Hello </details> ``` --- ### 額外提示🎖️ 如果您想在_貢獻者部分_中表彰您的貢獻者,您應該查看 [AllContributors](https://allcontributors.org/)。 您可以利用其機器人自動將所有最新貢獻者新增至您的自述文件。 以下是您可以獲得的內容的範例: [](https://allcontributors.org/) 您還應該查看[表情符號關鍵文件](https://allcontributors.org/docs/en/emoji-key),它使您能夠對不同類型的貢獻進行分類。 ⚡️ ---- ## 5️⃣ 利用預製模板📝 ### 有沒有為您建立自述文件的網站? 🤔 絕對地! 您可以**在那裡找到大量自述文件生成器。** 我掃描並挑選了我最喜歡的三個給你: 1️⃣ [自述文件範本](https://www.readme-templates.com/) 2️⃣ [Readme.so](https://readme.so/editor) 3️⃣ [Vercel 的 ReadME 產生器](https://readme-gen.vercel.app/) 我對這些的建議是使用它們作為基礎,然後自訂它們。 ⭐️ --- ### 你有給我一個自述文件範本嗎? 👀 我找到你了,朋友。 🫶 您可以在[此處](https://github.com/quine-sh/README-Template)找到我現成的範本。 [](https://github.com/quine-sh/README-Template) 要開始使用它: 1️⃣ `Fork` 倉庫 2️⃣ 將滑鼠停留在自述文件的「編輯」部分 3️⃣開始填寫您的資料✍️ 如果您發現此模板有用,如果您能通過**加星標**_給予它一些愛_,我將不勝感激。 🌟 --- 建立良好的自述文件是一項重要技能。 🛠️ 如何建構它可能是_存儲庫成功的決定因素。_ 請務必在評論部分分享您的專案及其完善的新自述文件! 您還可以利用這項新技能來建立很酷的編碼專案並競爭以獲得報酬。 🙌 如果您對此感興趣,請登入 Quine 並探索[任務](https://www.quine.sh/?utm_source=devto&utm_campaign=killer_github_profile),這是一個編碼、享受樂趣並獲得一些超棒獎勵的地方! 💰  下週見。 你的開發夥伴, 巴巴💚 --- 原文出處:https://dev.to/quine/5-pro-tips-for-an-unbeatable-readme-143i
你的轉職路上,還缺少一份自學作業包!寫完這幾包,直接拿作品去面試上班!
本學院另有附設一個 LINE 新手發問&交流群組!歡迎加入討論!